
caBench-To-Bedside Design Document

 Page 1

caBench-To-Bedside

Design Document
Version 1.0

[Insert approval date of document]

Revision History

Date Version Description

March 6, 2007 1.0 Draft document

July 29, 2007 1.0 Updated for beta release

caBench-To-Bedside Design Document

 Page 2

Index

1 INTRODUCTION... 6

2 HIGH LEVEL ARCHITECTURE.. 7

2.1 OVERVIEW .. 7
2.2 WHY CAB2B USES CLIENT-SERVER BASED ARCHITECTURE? .. 7
2.3 CLIENT-SERVER COMMUNICATION... 8

3 METADATA REPOSITORY.. 11

3.1 OVERVIEW .. 11
3.2 WHAT IS DYNAMIC EXTENSIONS? .. 11
3.3 STORING UML MODEL.. 12
3.4 PATH GENERATION MODULE .. 13
3.5 CATEGORY.. 15
3.6 METADATA CACHE ... 18

4 METADATA SEARCH.. 20

4.1 OVERVIEW .. 20
4.2 BACKEND IMPLEMENTATION .. 20
4.3 USER INTERFACE .. 22

5 QUERY OBJECT ... 24

5.1 OVERVIEW .. 24
5.2 CLASS DIAGRAM ... 25

6 QUERY ENGINE ... 26

6.1 OVERVIEW .. 26
6.2 CLASS DIAGRAM ... 26
6.3 SEQUENCE DIAGRAM... 28
6.4 FLOWCHART ... 29
6.5 LAZY INITIALIZATION ... 29

7 CUSTOM UI COMPONENTS .. 32

7.1 OVERVIEW .. 32
7.2 LIST OF CUSTOMIZED COMPONENTS .. 32
7.3 LAZY TABLE MODEL .. 33

8 DYNAMIC UI GENERATION FOR ADD/EDIT LIMITS .. 36

8.1 OVERVIEW .. 36
8.2 DESIGN ... 36

9 VISUAL QUERY INTERFACE OR DIAGRAMMATIC (DAG) VIEW.................................... 40

9.1 OVERVIEW .. 40
9.2 USER INTERFACE DESIGN ... 41
9.3 QUERY BUILDING ... 43

10 PAGINATION SWING COMPONENT... 45

10.1 OVERVIEW ... 45
10.2 DESIGN DETAILS .. 45

11 SEARCH DATA WIZARD.. 52

11.1 OVERVIEW ... 52
11.2 CLASS DIAGRAM .. 52
11.3 SEQUENCE DIAGRAM ... 53

caBench-To-Bedside Design Document

 Page 3

12 VIEW RESULTS .. 55

13 RECORD CUSTOMIZATION ... 57

13.1 OVERVIEW ... 57
13.2 WHY CUSTOMIZE IRECORD? .. 57
13.3 STEPS IN CUSTOMIZING A RECORD.. 57
13.4 RESULT CONFIGURATION XML ... 58
13.5 IRECORD AND ITS EXTENSIONS .. 59
13.6 QUERY RESULT TRANSFORMERS ... 60
13.7 DATA LIST TRANSFORMERS.. 62
13.8 RESULT RENDERERS .. 65

14 DATA LIST ... 67

14.1 OVERVIEW ... 67
14.2 VIEW DATA LIST .. 67
14.3 DATA LIST OPERATIONS .. 68

15 EXPERIMENT ... 70

15.1 OVERVIEW ... 70
15.2 EXPERIMENT DATA MODEL ... 70
15.3 SAVING AN EXPERIMENT.. 70
15.4 OPENING AN EXPERIMENT ... 71
15.5 CUSTOM DATA CATEGORY... 73

16 CHARTING .. 75

16.1 OVERVIEW ... 75
16.2 CLASSES INVOLVED ... 75
16.3 SEQUENCE DIAGRAM .. 76

17 FILTERS ... 77

17.1 OVERVIEW ... 77
17.2 CLASSES INVOLVED ... 77
17.3 SEQUENCE DIAGRAM .. 79

18 ANALYTICAL SERVICES INVOKER... 80

18.1 OVERVIEW ... 80
18.2 ENTITY TO ANALYTICAL SERVICE MAPPING XML .. 80
18.3 CLASSES INVOLVED ... 81

19 APPENDIX.. 82

19.1 DYNAMIC EXTENSION AND MDR .. 82

caBench-To-Bedside Design Document

 Page 4

List of Figures

Figure 1 caB2B Client-Server Architecture ... 7
Figure 2 Example of client server communication via an EJB lookup... 9
Figure 3 Class diagram showing usage of EJB with PathFinderBean example 10
Figure 4 Classes involved in storing UML model to MDR... 12
Figure 5 Class diagram of Path Generation Module ... 14
Figure 6 diagram for classes in category .. 15
Figure 7 Sequence diagram saving a category... 16
Figure 8 Category XML structure .. 17
Figure 9 Example of Category XML file... 17
Figure 10 Classes involved in category creation... 18
Figure 11 Classes in Metadata cache module .. 19
Figure 12 Classes- Metadata Search backend ... 21
Figure 13 Classes- Metadata Search user interface .. 23
Figure 14 Interfaces that compose the query object ... 25
Figure 15 Interfaces and classes that compose the query engine.. 26
Figure 16 Sequence diagram to show how a query is executed and results are returned 28
Figure 17 Detailed steps within the QueryExecutor .. 29
Figure 18 Sequence diagram - Lazy Initialization ... 31
Figure 19 Classes Involved in Lazy Table Model component... 34
Figure 20 Flow of events in displaying BDQ ... 35
Figure 21 Snippet of DTD used for dynamic UI configuration XML .. 37
Figure 22 Detailed steps for generating UI component for an attribute .. 38
Figure 23 Class diagram for classes participating in dynamic UI generation 39
Figure 24 Basic workflow in the DAG.. 41
Figure 25 Class diagram for classes in the DAG view .. 42
Figure 26 Class diagram for classes related to ambiguity resolver... 43
Figure 27 Client query builder interface for client side query building... 44
Figure 28 Snapshot of a Pagination component ... 46
Figure 29 Classes involved in Pagination component .. 49
Figure 30 Pagination Sequence Diagram ... 50
Figure 31 class diagram for the Search dialog wizard .. 52
Figure 32 sequence diagram for navigation from step1 to step2 in the wizard............................. 54
Figure 33 Classes involved in displaying query results... 55
Figure 34 Order of instantiation of panels for view results .. 56
Figure 35 Sample ResultConfiguration.xml... 58
Figure 36 IRecord and its extensions .. 59
Figure 37 Query Result Transformers... 61
Figure 38 Query Result transformers .. 62
Figure 39 Data list savers and factory... 63
Figure 40 Data list retrievers ... 64
Figure 41 Caarray extensions for data list operations... 65
Figure 42 Result Panel Model ... 66
Figure 43 Flow of events while displaying results ... 66
Figure 44 Classes involved in displaying data-list... 67
Figure 45 Sequence diagram for retrieving records of a data list ... 68
Figure 46 Sequence diagram for saving records of a data list .. 69
Figure 47 Experiment data model ... 70
Figure 48 Flow of evens for saving experiment... 71
Figure 49 Experiment UI model... 72
Figure 50 Flow of event for Open Experiment... 73
Figure 51 flow for saving the custom data category.. 74
Figure 53 Classes Involved in Charting... 75
Figure 54 Flow of events happening during chart generation ... 76
Figure 55 Classes Involved in Filtering data ... 77

caBench-To-Bedside Design Document

 Page 5

Figure 56 Flow of events happening when user applies a filter .. 79
Figure 1 Sample EntityToAnalyticalServiceMapping.xml.. 80
Figure 2 Classes involved in getting and invoking analytical services .. 81
Figure 57 Metadata Repository backbone .. 82
Figure 58 Dynamic extension basic metadata .. 83
Figure 59 Attribute Type Metadata .. 84
Figure 60 Inheritance Metadata... 85
Figure 61 Attribute Data Elements .. 86

caBench-To-Bedside Design Document

 Page 6

1 Introduction
This document explains the design of the components and modules present in caBench-To-
Bedside (caB2B) project. It provides details of different components that are being developed as
a part of caB2B application and may be shared across other applications.

caBench-To-Bedside Design Document

 Page 7

2 High Level Architecture

2.1 Overview
This section describes the overall architecture and high level design of the caB2B.

The caB2B application is a highly user interaction-rich application that will allow the user to
perform the following:

• Search and query different grid enabled data services to acquire data sets of interest

• Save data sets and create an ‘experiment’ in order to analyze and visualize this
information

• Perform different analyses using different grid enabled analytical services

• Visualize analysis results using a rich collection of windows

• Execute workflow jobs, time-taking queries, or analyses asynchronously

• Share experimental result amongst multiple caB2B users

The caB2B application has a client-server based architecture.

The caB2B client is a desktop application (implemented in Java Swing) which provides the user a
graphical user interface to search for data sets of interest, create experiments, and view different
analysis results.

The caB2B server performs backend activities associated with user interactions. The server
caches static data like classes and attributes from domain models and their associations as well
as query execution results. Following diagram shows overall architecture of caB2B. We will see
the components shown in this diagram in later sections

Figure 1 caB2B Client-Server Architecture

2.2 Why caB2B uses client-Server based architecture?

The rationale for selecting a client-server based architecture is as follows:

1. A centralized caB2B server avoids the need to install a database per client.

2. Server stores common data required by all the caB2B clients which includes

a. The parsed UML model classes and attributes and their associations obtained by
downloading models registered in the caDSR repository.

b. All possible paths between pairs of UML classes.

caBench-To-Bedside Design Document

 Page 8

3. Disk space consumption is reduced on the client as common data is stored on the server.

4. Common data which needs to be refreshed periodically from some source external to
caB2B like downloading UML models are fetched by the caB2B server. Thus every client
does not need to acquire such updates as this activity is centralized with clients
connecting to this sever to receive the latest updates.

5. The caB2B server caches static data like all the classes from the domain models and
associated paths resulting in significant performance gains.

6. Asynchronous tasks such as executing analytical services, executing complex queries
and workflow management may be performed by the caB2B sever allowing the caB2B
client to be interactive. The user can perform other tasks until the caB2B server
completes its task and returns results back to the client.

7. User created experiments and query results are stored on the server. Hence these
results and experiments may be shared across multiple users connecting to the same
caB2B server.

2.3 Client-Server Communication
Communication between the caB2B client and caB2B server occurs through RMI-IIOP i.e.
"Remote Method Invocation over the Internet Inter-ORB Protocol". EJB is a part of Java RMI-IIOP
i.e. EJB is a remote object and is callable from a different JVM. For more details on this use the
references section. The diagram below shows the architecture of the caB2B application
portraying how the client interacts with the server using EJBs:

2.3.1 The reasons for using EJBs

• EJB allows the client to have a remote Java object easily (i.e. the stubs are generated
automatically by the container).

• It is very easy to call EJB from a standalone client. With an EJB lookup and creation logic
are encapsulated in one place. The client code is not aware that there is an EJB on some
remote machine which is catering its request. The client just calls methods as if they are
being called locally.

• An EJB's life cycle are managed by a J2EE-compliant server.

• EJB provides failover and load balancing i.e. one instance of a stateless EJB can cater to
more than one client simultaneously.

• An EJB can "publish" a Java API centrally as a RemoteInterface. Such an API is referred
to as a BusinessInterface in caB2B. The class providing that API may be looked up and
methods may be called from any remote web application/standalone application.

• All EJBs are stateless session beans. For example the query engine related EJB
executes the user specified query and returns the result back.

• EJB is an open standard designed for vendor independence. The EJB specification is
developed and supported by all major open source and commercial vendors in the
enterprise Java community.

Dependency on EJB:
One important point to note here is that none of the business logic components have any
dependency on EJB. In fact, components like query interface, metadata repository, metadata
search and diagrammatic query view (DAG) are some of the components that are reused
across caTissue Suite and caB2B. Note that caTissue Suite is a web-based application
developed in Java Struts framework whereas caB2B is a desktop application developed in
Java Swing framework. In spite of these fundamental differences, reuse of most of the

caBench-To-Bedside Design Document

 Page 9

components illustrate that the business logic components does not have any dependency on
the technology used to communicate between client and server (EJB in this case).
Note: We are currently using EJB 2.1 and will be migrating to EJB 3 in the next release of the
caB2B application.

2.3.2 A Sample scenario
During server startup each EJB’s Home Object (i.e. factory for creating EJB instances) is tied with
a name in the JNDI (see references) tree on the same server. When the client needs to call a
method on the server, it does the following:

1. It asks the EJB-locator locate the appropriate EJB instance (in the form of a
BusinessInterface) that provides the required functionality. Each locator instance is
aware of which JNDI tree to refer.

2. The Locator looks up the ‘Home Object’ of the corresponding EJB in the JNDI tree and
uses it to get the EJB instance.

3. The client calls the required method on this business interface.

The following sequence diagram describes a sample flow of EJB lookup remotely. The example
is that of a finding all paths between two UML classes, also referred to as entities in the
application:

sd sequence

AddLimitPanel Locator JNDI tree

This is a remote call

locate(PathFinderHomeInterface)

lookup(PathFinderHomeInterface)

createBean(PathFinderHomeInterface)

PathFinderBusinessInterface

Figure 2 Example of client server communication via an EJB lookup

1. PathFinderBusinessInterface has method getAllPossiblePaths(). It accepts source,
destination and returns a list of Paths.

2. An EJB, PathFinderBean implements this interface.

3. Its home interface is PathFinderHomeInterface. EJB’s remote interface i.e.
PathFinderRemoteInteface will extend PathFinderBusinessInterface.

4. The UI will call Locator to find the appropriate class for finding paths. Locator will lookup the
PathFinderHomeInterface from the JNDI tree and will call create () on it which returns
PathFinderBusinessInterface. Locator will return that to the UI.

5. The UI will call getAllPossiblePaths() on PathFinderBusinessInterface to get the list of Paths.

caBench-To-Bedside Design Document

 Page 10

2.3.3 Classes involved in client-server communication

cd Logical Model

Locator

+ getInstance() : Locator

+ locate(String, Class) : BusinessInterface

+ clone() : Object

EJBObject

«interface»

PathFinderRemoteInterface

«interface»

PathFinderBusinessInterface

+ getAllPossiblePaths(EntityInterface, EntityInterface) : List<IPath>

+ getInterModelAssociations(Long) : List<IInterModelAssociation>

+ getCuratedPaths(EntityInterface, EntityInterface) : Set<ICuratedPath>

+ autoConnect(Set<EntityInterface>) : Set<ICuratedPath>

EJBHome

«interface»

PathFinderHomeInterface

+ create() : PathFinderRemoteInterface

Serializable

«interface»

BusinessInterface

SessionBean

AbstractStatelessSessionBean

+ ejbCreate() : void

+ ejbActivate() : void

+ ejbPassivate() : void

+ ejbRemove() : void

+ setSessionContext(SessionContext) : void

PathFinderBean

-locator

Figure 3 Class diagram showing usage of EJB with PathFinderBean example

Locator is responsible for all EJB lookups. This is a singleton class. The caB2B server to be
contacted in configured in "cab2b.properties". Locator looks up the Home Object of
corresponding EJB in JNDI tree and uses it to get EJB instance. It has the following method
to lookup BusinessInterface locate(String ejbName, Class homeClassForEJB)

AbstractStatelessSessionBean is an abstract class which represents a Stateless Session
Enterprise Java Bean. Each Stateless Session Bean must extend this class if it not extending
something else. This avoids the need of each bean to implement methods from the
javax.ejb.SessionBean class.
A home interface of an EJB defines the methods that allow a remote client to create, find, and
remove EJB objects. It extends javax.ejb.EJBHome

An EJB's remote interface provides the remote client view of an EJB object. It defines the
business methods callable by a remote client. The remote interface must extend the
javax.ejb.EJBObject interface and corresponding business interface.

BusinessInterface is a marker interface. All business interfaces must extend this interface.
Each EJB has a business interface which defines the enterprise Bean specific business
methods. This is to put a compile time check on the methods exposed by EJB and methods
implemented by EJB

caBench-To-Bedside Design Document

 Page 11

3 Metadata Repository

3.1 Overview
One of the basic requirements of caB2B is to be able to download a UML model of any
application from the caDSR and provide capabilities to build a query to fetch data from that
data source. In order to understand the design of caB2B it is necessary to first understand
the design and concept of the metadata repository (MDR).

MDR stores the metadata for an UML model including its semantic annotations like all
CDEs including permissible values by decomposing the annotated UML model obtained
from caDSR.

It also contains all-to-all paths between every two classes. The caB2B server pre-
calculates the paths between all pairs of classes in the UML model and stores them in the
MDR. Classes from different applications are connected based on their attribute’s CDE
match. This involves matching the concept codes of the classes and their attributes in
order. Finally, given the amount of information it stores, it is also possible to get all the
paths between two classes across two different UML models based on semantic
interoperability.

The design of MDR is the basic foundation for caB2B backend. It enables the caB2B query
engine to provide the following functionalities:

• Metadata search

• Auto generation of user interface for entering predicates

• Automatic path resolution between two query predicates

• Category support

• Inter model queries based on semantic joins

caB2B uses Dynamic Extensions framework to store the UML model along with its
semantic annotations.

3.2 What is Dynamic Extensions?
Dynamic Extensions is a framework that allows creating business objects dynamically in
the form of entities and attributes. Following are the Dynamic Extensions (DE) terms
regularly referred in this document:

• Entity is a UML class.

• Attribute is a UML attribute.

• Association is relationship between any two entities.

The metadata definition of entity and attribute includes:

• Model Properties (i.e. Data type, Precision etc.)

• Semantic properties (i.e. concept codes)

• Value domain specification (CDE public id, permissible values etc.)

For the detailed design of MDR, please refer to Section Overview and UML metadata of
the Dynamic Extensions design document.

Note: Since Dynamic Extensions design document is not formally released, those two
sections are appended to the Appendix of this document. Once the DE design document is
release, the appendix will be deleted.

caBench-To-Bedside Design Document

 Page 12

3.3 Storing UML model
This activity involves following

• Parsing the domain model downloaded from caDSR using caGrid APIs

• Storing the metadata in DE along with inheritance relations.

• Finding out semantic relations of entities from current model to entities already
present in system (coming from different model)

The class diagram below shows all the classes involved in parsing domain models,
storing them in MDR, and finding and storing all possible non-redundant paths.

cd Path Building

InterModelConnection

+ getLeftAttributeId() : Long

+ getLeftEntityId() : Long

+ getRightAttributeId() : Long

+ getRightEntityId() : Long

PathBuilder

+ buildAndLoadAllModels(Connection) : void

+ loadSingleModel(Connection, String, String) : void

+ getNextPathId(Connection) : long

DomainModelParser

+ DomainModelParser(String)

+ getDomainModel() : DomainModel

+ getUmlAssociations() : UMLAssociation[]

+ getUmlClasses() : UMLClass[]

+ getParentVsChildrenMap() : Map<String,List<String>>

DomainModelProcessor

+ DomainModelProcessor(DomainModelParser, String)

+ getEntityIds() : List<Long>

+ getAdjacencyMatrix() : boolean[]

+ getReplicationNodes() : Map<Integer, Set<Integer>>

+ getEntityGroup() : EntityGroupInterface

PropertyLoader

+ getPropertiesFromFile(String) : Properties

+ getModelPath(String) : String

+ getServiceUrls(String) : String[]

+ getAllApplications() : String[]

+ getJndiUrl() : String

«use»

«call»

«use»

«call»

«instantiate»

Figure 4 Classes involved in storing UML model to MDR

• PathBuilder is a controller that calls different utility classes to populate MDR by
decomposing models defined in cab2b.properties file. It loads all possible non-redundant
paths for a given model to database.

• DomainModelProcessor stores the decomposed UML model to MDR. It first transforms
converts model into DE’s objects and processes inheritance relationship in the model.
Then DomainModelProcessor stores these objects to MDR. It also generates an
adjacency matrix and related information required for path calculation. An instance of this
class refers to one domain model

• DomainModelParser converts a domain model XML file located at a given path to
caGrid metadata objects using the caGrid metadata utility
(gov.nih.nci.cagrid.common.Utils).

• PropertyLoader handles fetching properties from "cab2b.properties" file. It provides
methods

o To get all the models loaded in caB2B

caBench-To-Bedside Design Document

 Page 13

o To get the file system path for the domain model XML of a given application

• InterModelConnection represents one link present between two entities from different
models. This link is a pair of semantically equivalent (i.e. reused CDEs) attributes of
classes from different models.

3.4 Path Generation Module

3.4.1 Steps and Classes Involved
This module calculates all possible ways to connect any two entities in the same model. It
consumes the adjacency matrix generated by DomainModelProcessor. It converts that to a
Graph object which is an adjacency list representation of a (directed) graph. Each vertex of
the graph is a Node. This module outputs set of edu.wustl.cab2b.server.path.pathgen.Path
which is an immutable representation of a path as a collection of the following:

• Source/From edu.wustl.cab2b.server.path.pathgen.Node

• Destination/To edu.wustl.cab2b.server.path.pathgen.Node

• A java.util.List of intermediate nodes needed to traverse from fromNode to toNode.

At any point in time, GraphPathFinderCache contains all the paths between all pairs of
nodes that have been computed till then. When the algorithm terminates, this cache will thus
contain all the resultant paths. This cache helps avoid recalculation of paths between a pair
of nodes, and thus improves efficiency. Figure below shows all the classes involved in this
module.

PathReplicationUtil replicates paths of parent entity to its child. For example suppose P1,
C1, P2, C2 are classes. C1 is child of P1 and C2 is child of P2. There is a bi-directional
association present between P1 and P2. There is not association between C1 and C2. Then
system generates following paths along with normal path between P1 and P2

1. Path between P1 and C2
2. Path between C1 and P2
3. Path between C1 and C2

caBench-To-Bedside Design Document

 Page 14

cd Path Building

GraphPathFinder

+ getAllPaths(boolean[][], Map<Integer, Set<Integer>>, Connection) : Set<Path>

GraphPathFinderCache

~ addEntry(SourceDestinationPair, Set<Node>, Set<Path>) : void

~ getPathsOnIgnoringNodes(SourceDestinationPair, Set<Node>) : Set<Path>

~ getAllPaths() : Set<Path>

~ cleanup() : void

~ checkAl ive() : void

MemoryCache

Node

+ getId() : int

+ getIdAsString() : String

Path

+ containsNode(Node) : boolean

+ isCyclePresent() : boolean

+ isSelfEdge() : boolean

+ getIntermediateNodes() : List<Node>

+ fromNode() : Node

+ toNode() : Node

PathReplicationUtil

+ replicatePaths(Set<Path>, Map<Integer, Set<Integer>>) : Set<Path>

SourceDestinationPair

+ SourceDestinationPair(Node, Node)

+ getDestNode() : Node

+ getSrcNode() : Node

DatabaseCache

Graph

+ Graph()

+ Graph(boolean[][])

+ addAdjacentNode(Node, Node) : void

+ addNode(Node) : void

+ getAdjacentNodes(Node) : Set<Node>

+ containsNode(Node) : boolean

+ numberOfNodes() : int

+ allNodes() : Set<Node>

+ isEdgePresent(Node, Node) : boolean

-destNode-srcNode

-sdp

-cache

-inputGraph

«use»

«instantiate»

Figure 5 Class diagram of Path Generation Module

3.4.2 Algorithm for Path Generation

This algorithm computes all possible paths present in a directed graph. No path returned
should contain a cycle. Suppose the graph is (V, E) where V is the set of vertices and E
is the set of edges. A source-destination-pair (SDP) is represented as i->j.

GraphPathFinderCache.getPathsOnIgnoringNodes(SDP, Set) method

returns the set of paths for given SDP and ignored nodes. Denote the SDP by i->j, and

ignoredNodes by N.

Let n(p) denote the nodes in a path p. Then, given that N1 ⊆ N2, we can compute

P(i->j, N1 from P(i->j, N2) using the following formula

P(i->j, N1) = {p : p ∈ P(i->j, N2), n(p) ∩ N1 = {} }.

Thus this method is expected to do the following:

1. If there is an entry in the cache P(i->j, N), return it, else continue.

2. If there exists an entry in the cache P(i->j, M) such that M ⊆ N then

compute P(i->j, N) using above formula and return it, else continue

3. Return null

Note that if an empty set of paths is returned, it means that it has been computed already
that there are no paths present, i.e. P(i->j, N) = {}. The algorithm is as follows:

caBench-To-Bedside Design Document

 Page 15

For each pair of nodes {i, j : i ∈ V, j ∈ V, i ≠ j} in the graph, call

getPaths(i->j, {}). Self-edges (a self-edge is a path of the form i->i) are then

added to the resulting set of paths. getPaths() is the method where the core of the

algorithm resides. Suppose P(i->j, N) is the set of paths about to be returned from

getPaths(). Following is what happens on a call getPaths(i->j, N), where N is

the ignoredNodesSet :

1. Let X = GraphPathFinderCache.getPathsOnIgnoringNodes(SDP,

Set) with (i->j, N) as parameters;

If X != null, then P(i->j, N) = X; return P(i->j, N).

Else continue.

2. If i->j ∈ E then add a path i->j to P(i->j, N).

3. Let K = {k : k ∈ V, k ≠ i, k ≠ j, k ∈ N, i->k ∈ E).

For each k ∈ K, do the following:

1. Call getPaths (k->j, N ∪ {i}). Suppose the returned set of

paths is R.

2. For each path Rx (0 < x < |R|) in R, add the path i->Rx to

P(i->j, N).

4. Add P(i->j, N) to the cache.

5. Return P(i->j, N)

3.5 Category

3.5.1 What is a Category
Category is a collection of attributes from one or more UML classes. These UML classes
may be from same or different applications. The UML classes in a category should be
directly or indirectly connected using UML associations.
As an illustration of the usage of category, consider the following use case: Get all genes
with annotation which are associated with a given "Gene" through pubMed literature
abstract i.e. get list of genes having literature relationship correlation value > 0.5 and
have relationship with given gene. The UML diagram for the classes in the query is

Figure 6 diagram for classes in category

caBench-To-Bedside Design Document

 Page 16

To build the example query, user would
1. Search the four classes individually
2. Add limits on each of them
3. Connect all the classes in the DAG view

Shortcomings of above process:

• UML Class is a collection of attributes that makes sense to developers and
bioinformaticians.

• The steps described above are cumbersome and time-consuming

• Each user who wishes to perform this query has to follow this process every time

In certain cases it may be found/felt that each user will define limits on specific attributes
of certain logically related classes and connect them by similar paths. In such cases,
those attributes can be grouped together to build predefined units with unambiguous
paths to save users’ time. These predefined units are categories.

Benefits

• Ability to apply limits on attributes of several UML classes in one go

• Paths among classes in a category will be predefined in metadata. Thus, the
user need not find paths required to traverse logically related classes every time.

• End-user sees attributes in a single logical unit even though they belong to
different classes due to modeling constraints

• Users with limited knowledge of UML domain models can query on categories.

• Advanced users can also use categories as building blocks for their complex
queries

3.5.2 Creating a Category
Category is defined as a well-formed XML file called category XML. CategoryXmlParser
parses this file and generates an InputCategory object. PersistCategory converts
InputCategory to Category hibernate-object which will be saved by
CategoryOperations. This flow in explained in sequence diagram below

Figure 7 Sequence diagram saving a category

caBench-To-Bedside Design Document

 Page 17

Category XML
This is a well-formed XML file, which defines a category. All categories are first defined
as a Category XML and then they are imported into the caB2B MDR. The structure of this
file is as follows:

Figure 8 Category XML structure

Below is the example of the Category XML file for the category “Genomic identifiers”

Figure 9 Example of Category XML file

3.5.3 Class Diagram
Classes involved in category creation are shown in figure shown below.

caBench-To-Bedside Design Document

 Page 18

cd CategoryOperations

DefaultBizLogic

CategoryOperations

+ saveCategory(Category) : void

+ getCategoryByEntityId(Long, Connection) : Category

+ getCategoryByCategoryId(Long, Connection) : Category

+ getAllSourceClasses(Category) : Set<EntityInterface>

+ getAllRootCategories() : List<EntityInterface>

+ getAllCategories(Connection) : List<Category>

+ getAllSourceAttributes(Category) : Set<AttributeInterface>

CategoryXmlParser

+ getInputCategory(String) : InputCategory

InputCategorialAttribute

+ getDisplayName() : String

+ setDisplayName(String) : void

+ getDynamicExtAttribute() : AttributeInterface

+ setDynamicExtAttribute(AttributeInterface) : void

InputCategorialClass

+ getAttributeList() : List<InputCategorialAttribute>

+ setAttributeList(List<InputCategorialAttribute>) : void

+ getChi ldren() : List<InputCategorialClass>

+ setChildren(List<InputCategorialClass>) : void

+ getPathFromParent() : long

+ setPathFromParent(long) : void

InputCategory

+ getRootCategorialClass() : InputCategorialClass

+ setRootCategorialClass(InputCategorialClass) : void

+ getSubCategories() : List<InputCategory>

+ setSubCategories(List<InputCategory>) : void

+ getName() : String

+ setName(String) : void

+ getDescription() : String

+ setDescription(String) : void

PersistCategory

+ persistCategory(InputCategory, Category) : Category

+ getCategoryEntity() : EntityInterface

+ persistCategories(String[]) : void

+ main(String[]) : void

1
*+attributeList

1

1+rootCategorialClass

«instantiate»

«instantiate»

«instantiate»

Figure 10 Classes involved in category creation

• InputCategory is an object representation of the "Category" tag of category XML.

• InputCategorialClass is an object representation of the “CategorialClass" tag of
category XML.

• InputCategorialAttribute is an object representation of the "Attribute" tag of category
XML.

• CategoryXmlParser provides methods to parse a category XML (see references) file
and converts it into Java object form. These Java objects will be used in actual category
creation and saving.

• PersistCategory provides methods to save a category in the database. It uses
CategoryXmlParser to convert a category XML to corresponding objects (InputCategory)
and then builds actual Category objects and saves them to the database using Hibernate.

• CategoryOperations provides functions for database operations needed for a category
such as save and retrieve.

3.6 Metadata Cache
Contents of MDR are needed frequently by various cab2b-components. To improve
efficiency, by avoiding database calls, metadata cache module is introduced. Classes
involved in this module are shown in diagram below.

IEntityCache is an interface with methods needed for metadata search. Those will
be explained in Metadata Search section later. AbstractEntityCache is an abstract class
having all the methods exposed by this module. All components access MRD information

caBench-To-Bedside Design Document

 Page 19

through this class only. It provides variety of methods to get metadata along with providing
searching methods from IEntityCache. getCab2bEntityGroups () is the only abstract
method in AbstractEntityCache. This method is used to populate the cache. So it is up to
implementer’s responsibility to decide how it will get entity groups. There are two
implementing classes EntityCache and ClientSideCache.

EntityCache calls dynamic extension API directly to get entity groups. EntityCache
is a singleton class residing in server side. It is instantiated and populated on first server
call. It is then used by all of the components running at server side. ClientSideCache calls
an EJB UtilityBean to get entity groups as it won’t have direct access to DE APIs. It is also
a singleton class which is instantiated and populated before launching client. It is then used
by all of the components running at client side.

Figure 11 Classes in Metadata cache module

caBench-To-Bedside Design Document

 Page 20

4 Metadata Search

4.1 Overview

As the end users may not be familiar with object models, there should be a way for them to first
search for the entity on which they want to query. For example, an end user will not know which
entity has the attribute for clinical diagnosis in the caTissue object model. The metadata allows
users to first search for entities based on metadata such as names, attribute names, permissible
values, or definitions using free text search or concept codes. This module has backend search
implementation and a user interface to specify search conditions, display search results.

4.2 Backend Implementation
Metadata search back end part exposes one method on MetadataSearch class
search(int[] searchTarget, String[] searchString, int basedOn) Parameter details are:

• basedOn: the basis of search, whether a text based or concept code based search is
asked

• searchString[]: Array of Strings created by splitting string entered by user based on space
characters

• searchTraget[]: Where to search is specified by this. Typical values are class, attribute,
permissible values, class-description and attribute-description

The dataset to be searched is decided by the IEntityCache object passed to construct
MetadataSearch object. IEntityCache provides searching methods like

• getEntityOnEntityParameters(entityCollection)

• getEntityOnAttributeParameters(attributeCollection)

• getEntityOnPermissibleValueParameters(PVCollection)

• getCategories(Collection<EntityInterface> entityCollection)

• getCategoriesAttributes(attributeCollection)

Each of above method returns a MatchedClass object. MatchedClass is a wrapper around set of
entities. The search () method searches each searchTarget for all strings in searchString array
by calling one of the above methods of IEntityCache for each searchString. Then it merges the
results of all individual searches using method createResultClass () and returns one
MatchedClass object.

CompareUtil is responsible for deciding whether a particular entity, attribute, permissible value or
semantic property is matching user criterion. It has compare() methods which take pair of
entities, attributes, permissible values or semantic properties and returns a boolean. If user
entered string is contained in string to be search, then it is added to result. Below diagram shows
all of the classes along with their behaviors and relationships with each others.

caBench-To-Bedside Design Document

 Page 21

Figure 12 Classes- Metadata Search backend

caBench-To-Bedside Design Document

 Page 22

4.3 User Interface

User interface of this module mainly consist of SearchPanel. AdvancedSerachPanel and
SearchResultPanel are embedded in SearchPanel for common functionalities and code reuse.
AdvancedSearchPanel is panel where user specifies search criterion, SearchResultPanel
displays search results using pagination component (for details refer to chapter Pagination
Component). The diagram below shows these classes along with their local classes.

• AdvancedSearchPanel: It is a class which contains commonalities between the collapsible
portions of the advanced/category search panels for the 'Choose Category' as well as
'AddLimit' section from the main search dialog. TaskPaneMouseLister is its local class. The
collapsible portion provides options for searching category, attribute, permissible values with
provision of concept code or text search.

• SearchResultPanel: This class that contains commonalities required for displaying results
from the 'AddLimit' and 'Choose Category' section from the main search dialog.
MyCellRenderer, AddLimitButtonListner, CDETableModel, EditLimitButtonListner,
AttributeDetailsLinkListener are its local class.

• SearchPanel: It is the main class that contains UI commonalities between the
advanced/category search panels for the 'Choose Category' as well as 'AddLimit' section
from the main search dialog. SearchActionListener is its local class.

caBench-To-Bedside Design Document

 Page 23

Figure 13 Classes- Metadata Search user interface

caBench-To-Bedside Design Document

 Page 24

5 Query Object

5.1 Overview
The query-object (IQuery) provides the interfaces used to represent a user-defined query. The
query consists of outputs (represented by IOutputTreeNode) and constraints (represented by
IConstraints). User defined conditions (e.g. Participant.sex = ‘female’) are represented by
ICondition. Conditions on different attributes of an entity are grouped together as a rule
(represented by IRule). Various rules/expressions on an entity can be logically grouped into an
expression (represented by IExpression). An expression thus consists of operands (i.e. rules or
sub expressions; this is represented by IExpressionOperand) connected by logical operators
(AND, OR). Operands in an expression may also be parenthesized.

The various expressions thus formed need to be linked together. Two expressions are linked by
an association (represented by IAssociation). These linkages among the expressions constitute
the join graph (represented by IJoinGraph).

Interface Summary

ICondition A condition containing an attribute, relational operator and value(s).
E.g. participant.sex = 'Male' forms one ICondition

IRule A list of conditions on different attributes of an entity.
The conditions in a rule are implicitly linked by an AND condition.

ILogicalConnector Represents a logical connector (AND / OR). The nesting represents the
number of parentheses (depth of parentheses) around the logic portion
(AND or OR) of the connector.

IExpressionId An immutable wrapper around int used to uniquely identify an
expression within a query. It is auto generated when an expression is
added to a query (using IConstraints.addExpression).

IExpression A list of operands, and the logical connectors (AND, OR) together form
a logical expression. The connectors are identified by the position of
the operands on either side. An IExpression belongs to a constraint
entity and constraints on another associated entity will be present as a
sub expression on the associated entity. Conversely, if an expression
has a sub expression, there must an association in the join graph from
the parent expression to the sub expression.
Note: "sub expression" refers to an operand that is the IExpressionId of
the child expression. The entity of the sub expression will generally be
different from the entity of this expression (the exception is when a
class is associated to itself, e.g. Specimen class in caTissue Core).
The expression for an ExpressionId is found from IConstraints.

IExpressionOperand A marker interface for an operand. An operand is either a sub
expression (in which case, the corresponding expression id is added),
or a rule.

IJoinGraph A rooted, directed acyclic graph with expressions as vertices, and
associations as edges. The graph will always contain all the
expressions' ids (obtained from IConstraints) as vertices. The vertices
will be added to/removed from the Joingraph as and when expressions
are added to/removed from IConstraints. The methods in Joingraph can
only add/remove associations among the vertices.
If v1 and v2 are two vertices, the direction will be v1->v2 if v2 is a sub
expression of v1. This graph determines the join conditions in the
query. E.g. for each edge (v1, v2) there will be a join between the
entities (IConstraintEntity) of the expressions denoted by v1 and v2;

caBench-To-Bedside Design Document

 Page 25

and the join condition is determined by the information in IAssociation.

IQueryEntity An entity on which the user specifies limits (constraints)
e.g. Participant is an IQueryEntity

IConstraints Contains information about the constraints of a query. It contains a list
of IExpressions. This list is indexed by IExpressionId. This is global
storage for all the expressions in a query. Calling the addExpression()
method here creates an IExpression. It also contains a join graph for
specifying how the expressions are linked together.

IOutputEntity An entity which is desired as the output of the query.

IOutputTreeNode The output entities of a query form a tree with vertex as IOutputEntity
and edge as IAssociation. IOutputTreeNode represents one node of
this tree.

IQuery The query object representing a complete user-defined query
consisting of outputs and constraints.

5.2 Class diagram
cd queryobject

«interface»

IRule

+ addCondition() : ICondition

+ addCondition(ICondition) : ICondition

+ getCondition(int) : ICondition

+ getContainingExpression() : IExpression

+ size() : int

IBaseQueryObject

«interface»

IQuery

+ getConstraints() : IConstraints

+ setConstraints(IConstraints) : void

+ getRootOutputClass() : IOutputTreeNode

+ setRootOutputClass(IOutputTreeNode) : void

IBaseQueryObject

«interface»

IOutputTreeNode

+ addChild(IAssociation, IOutputEnti ty) : IOutputTreeNode

+ getOutputEntity() : IOutputEntity

+ getChildren() : List<IOutputTreeNode>

+ getAssociationsWithChild(IOutputEnti ty) : List<IAssociation>

+ getAssociationWithParent() : IAssociation

+ removeChild(IAssociation, IOutputEnti ty) : boolean

+ getParent() : IOutputTreeNode

+ isLeaf() : boolean

+ isRoot() : boolean

IBaseQueryObject

«interface»

ILogicalConnector

+ getLogicalOperator() : LogicalOperator

+ setLogicalOperator(LogicalOperator) : void

IBaseQueryObject

«interface»

IExpressionOperand

+ isSubExpressionOperand() : boolean

«interface»

IExpressionId

+ getInt() : int

«interface»

IExpression

+ getOperand(int) : IExpressionOperand

+ getConstraintEnti ty() : IConstraintEntity

+ setOperand(int, IExpressionOperand) : void

+ getLogicalConnector(int, int) : ILogicalConnector

+ setLogicalConnector(int, int, ILogicalConnector) : void

+ addParantheses(int, int) : void

+ addParantheses() : void

+ removeParantheses(int, int) : void

+ removeParantheses() : void

+ addOperand(IExpressionOperand) : IExpressionOperand

+ addOperand(ILogicalConnector, IExpressionOperand) : void

+ addOperand(int, ILogicalConnector, IExpressionOperand) : void

+ addOperand(int, IExpressionOperand, ILogicalConnector) : void

+ removeOperand(int) : IExpressionOperand

+ removeOperand(IExpressionOperand) : boolean

+ indexOfOperand(IExpressionOperand) : int

+ getExpressionId() : IExpressionId

+ numberOfOperands() : int

+ isVisible() : boolean

+ isInView() : boolean

+ setVisible(boolean) : void

+ setIsInView(boolean) : void

+ containsRule() : boolean

IBaseQueryObject

«interface»

IConstraints

+ getExpression(IExpressionId) : IExpression

+ removeExpressionWithId(IExpressionId) : IExpression

+ addExpression(IConstraintEntity) : IExpression

+ getJoinGraph() : IJoinGraph

+ getRootExpressionId() : IExpressionId

IBaseQueryObject

«interface»

ICondition

+ getAttribute() : AttributeInterface

+ getRelationalOperator() : RelationalOperator

+ getValue() : String

+ setAttribute(AttributeInterface) : void

+ setRelationalOperator(RelationalOperator) : void

+ setValue(String) : void

+ setValues() : void

+ addValue(String) : void

IBaseQueryObject

«interface»

IJoinGraph

+ getAssociation(IExpressionId, IExpressionId) : IAssociation

+ putAssociation(IExpressionId, IExpressionId, IAssociation) : IAssociation

+ removeAssociation(IExpressionId, IExpressionId) : boolean

+ isConnected() : boolean

+ containsAssociation(IExpressionId, IExpressionId) : boolean

+ getRoot() : IExpressionId

«interface»

associations::IAssociation

«interface»

dynamicextensions::AttributeInterface

«interface»

IOutputEntity

+ getUrls() : List<String>

+ setUrls(List<String>) : void

+ getSelectedAttributes() : List<AttributeInterface>

+ setSelectedAttributes(List<AttributeInterface>) : void

«interface»

IQueryEntity

+ getDynamicExtensionsEntity() : EntityInterface

+ isCategory() : boolean

«interface»

IInterModelAssociation

+ getSourceAttribute() : IAttribute

+ getTargetAttribute() : IAttribute

+ removeSourceServiceUrl(String) : boolean

+ removeTargetServiceUrl(String, String) : boolean

+ setSourceAttribute(IAttribute) : void

+ setTargetAttribute(IAttribute) : void

+ addSourceServiceUrl(String) : void

+ addTargetServiceUrl(String, String) : void

«interface»

IIntraModelAssociation

+ getTargetRoleName() : String

+ setTargetRoleName(String) : void

+ getSourceRoleName() : String

+ setSourceRoleName(String) : void

«interface»

dynamicextensions::AssociationInterface

«interface»

dynamicextensions::EntityInterface

Figure 14 Interfaces that compose the query object

caBench-To-Bedside Design Document

 Page 26

6 Query Engine
Query engine interprets the query object and converts it to DCQL(s), executes DCQL(s) and gets
result back from data services

6.1 Overview
The category constraints made by the user using the caB2B client’s DAG view are stored in the
query-object i.e. ICab2bQuery (which extends IQuery to add information regarding output class’
service URLs). The query engine is an EJB that processes the ICab2bQuery to form the
corresponding DCQL, executes the DCQL, and returns the results back to the client.

6.2 Class diagram
cd ClassDiagram

ConstraintsBuilder

+ ConstraintsBuilder(ICab2bQuery, CategoryPreprocessorResult)

+ buildConstraints() : ConstraintsBui lderResult

ConstraintsBuilderResult

- expressionToConstraintMap: HashMap<IExpression, DcqlConstraint> = new HashMap<IEx...

- classToDcqlConstraintsMap: HashMap<EntityInterface, List<DcqlConstraint>> = new HashMap<Ent...

+ getExpressionToConstraintMap() : Map<IExpression, DcqlConstraint>

+ getDcqlConstraintForClass(EntityInterface) : DcqlConstraint

QueryExecutor

+ executeQuery(ICab2bQuery) : IQueryResult

DcqlConstraint

- constraintType: ConstraintType

- constraint: Object

+ DcqlConstraint()

DcqlConstraint(ConstraintType)

+ getConstraintType() : ConstraintType

- setConstraintType(ConstraintType) : void

getConstraint() : Object

setConstraint(Object) : void

«enumeration»

DcqlConstraint::ConstraintType

+ «enum» Any:

+ «enum» Attribute:

+ «enum» Group:

+ «enum» LocalAssociation:

+ «enum» ForeignAssociation:

AbstractStatelessSessionBean

QueryEngineBusinessInterface

QueryEngineBean

+ executeQuery(ICab2bQuery) : IQueryResult

IBaseQueryObject

«interface»

IQueryResult<R extends IRecord>

~ getRecords() : Map<String, List<R>>

~ addRecord(String, R) : void

~ addRecords(String, List<R>) : void

~ addUrl(String) : List<R>

~ getOutputEntity() : EntityInterface

CategoryPreprocessor

+ processCategories(IQuery) : CategoryPreprocessorResult

CategoryPreprocessorResult

- exprsSourcedFromCategories: Map<EntityInterface, Set<TreeNode<IExpression>>>

- redundantExprs: Set<IExpression>

- catClassForExpr: Map<IExpression, CategorialClass>

- original lyRootCatClasses: List<CategorialClass>

- categoryForEnti ty: Map<EntityInterface, Category>

+ getExprsSourcedFromCategories() : Map<Enti tyInterface, Set<TreeNode<IExpression>>>

+ getRedundantExprs() : Set<IExpression>

+ getOutputExpressions() : Set<TreeNode<IExpression>>

+ getCatClassForExpr() : Map<IExpression, CategorialClass>

+ getOriginallyRootCatClasses() : List<CategorialClass>

+ getCategoryForEnti ty() : Map<EntityInterface, Category>

«interface»

IQueryResultTransformer

~ getResults(DCQLQuery, Enti tyInterface) : IQueryResult<R>

~ getCategoryResults(DCQLQuery, CategorialClass) : IQueryResult<C>

QueryResultTransformerFactory

{leaf}

+ createTransformer(EntityInterface) : IQueryResultTransformer<?, ?>

«creates»

«call»

-constraintType

«instantiate»

«call»

«use»

«use»
«use»

«use»

«instantiate»

«instantiate»

«use»

Figure 15 Interfaces and classes that compose the query engine

Description of classes and their interactions:

• QueryEngineBean is an EJB that receives the calls for query execution from the caB2B
client. It just forwards the call to QueryExecutor.

• IQueryResult is a map of the service URL to records obtained from that service. The
records are represented as a two-dimensional array with columns corresponding to
attributes and rows to values.

• QueryExecutor uses the ConstraintsBuilder to form DCQL(s), hands over the DCQL(s)
to an appropriate transformer and returns the resulting IQueryResult. Multiple DCQLs are
fired when the output is category; CategoryPreprocessorResult is used in this process.

• CategoryPreprocessor modifies an input IConstraints by expanding the IExpressions on
categories to its constituent classes. Thus IConstraints is modified to only contain
IExpressions on classes.

caBench-To-Bedside Design Document

 Page 27

• CategoryPreprocessorResult represents the results of the CategoryPreprocessor. It
provides additional information about the relationship between the original category
entities in the query and the new expressions created for them.

• ConstraintsBuilder processes an IQuery object and returns a corresponding
ConstraintsBuilderResult object (See Figure 13.0). It uses the
CategoryPreprocessorResult for this processing.

• DcqlConstraint is a wrapper around any of the following four types of objects that
compose part of the caGrid DCQLQuery. For details related to these and DCQLQuery
please see the caGrid Programmer’s Guide

o Attribute
o Association
o ForeignAssociation
o Group

• ConstraintType is used to distinguish among the above four types of constraints.

• ConstraintsBuilderResult provides the DCQLConstraint corresponding to each
IExpression in the query.

• QueryResultTransformerFactory provides the appropriate transformer.

• IQueryResultTransformer executes the DCQL using the caGrid FQP and transforms
the results to appropriate IRecord. See Query Result Transformers (Chapter Record
Customization).

caBench-To-Bedside Design Document

 Page 28

6.3 Sequence diagram
sd SequenceDiagram

QueryExecutor

QueryEngineBean

Client

Locate ejb

instance using

Locator
CategoryPreprocessor

ConstraintsBuilder

build DCQL(s) using

ConstraintsBuilderResul t and

CategoryPreprocessorResult

QueryResultTransformerFactory

IQueryResultTransformer

In a single call to IQueryExecutor, depending on whether the output

entity is a class or category, only one of getResul ts or getQueryResults

methods, respectively, is called.

If the output is a category, then multiple DCQLs are created and multiple

calls to getCategoryResul ts are made. All the IQueryResul ts are then

merged into a single IQueryResult.

FederatedQueryEngine

transform the resul ts to

appropriate IQueryResult wi th

appropriate IRecord's

locate

executeQuery(ICab2bQuery)

new

processCategories(query)

CategoryPreprocessorResult:=

new(query, categoryPreprocessorResult)

buildConstraints

ConstraintsBuilderResult:=

createTransformer(outputEntity)

new

IQueryResultTransfomer

getResul ts(dcql, outputEnti ty)

getCategoryResults(dcql , categorialClass)

new

execute(dcql)

DCQLQueryResultsCollection:=

IQueryResult

IQueryResul t

IQueryResult

Figure 16 Sequence diagram to show how a query is executed and results are returned

caBench-To-Bedside Design Document

 Page 29

6.4 Flowchart
cd Flowchart

Init currentExpr=rootExpr

Form Group or Attribute

corresponding to each

rule in the expression.

For all operands of

currentExpr do

Is operand a rule?

From the joinGraph, find

the association linking the

classes of the parent and

child expression.

Form DCQL "Association" Form DCQL
"ForeignAssociation"

(results in semantic join

across applications)

isInterModelAssociation?

Set currExpr = the

sub-expr operand

Break down the

constraints on categories

to constraints on actual

classes

operands left?

CategoryPreprocessor

ConstraintsBui lder

Is output a category?

Create DCQL with output

class as the target, and

appropriate constraints

(obtained from

ConstraintsBuilderResult)

Execute DCQL and obtain

results using appropriate

query result transformer

Perform a breadth-first trav ersal

of the categorial classes tree of

the category. At each lev el, form

DCQLs for the classes at that

lev el and obtain results for the

DCQLs using appropriate

transformers.

DCQL for a class also has constraints

corresponding to the ids of the parent class.

This is why the traversal is breadth-first.

The DCQLs for the classes at same level

are executed in paral lel . The

ICategorialClassRecord's obtained for a

class are added as children records for

the parent ICategorialClassRecord. Thus,

the tree of ICategorialClassRecord's is

also simultaneously formed.

Return the results

#No #Yes

#(recursiveCal l)

#Yes

#No #Yes

#No (proceed after recursion terminates)

Figure 17 Detailed steps within the QueryExecutor

6.5 Lazy initialization
Sometimes a record may be very big i.e. it may consume a lot memory. An example is a
biodatacube. Sending the complete record from the caB2B server to the client would be
unreasonable in such cases because:

• Client-side memory would be relatively lesser.

• The user may not wish to see the complete record; only some parts of it may be required
at a time.

caBench-To-Bedside Design Document

 Page 30

• Client performance would deteriorate due to the large amount of network traffic.

Thus, it is required, in some cases, to be able to initialize a record lazily.
Lazy initialization entails the following:

1. Store the complete record on the server side, and provide a handle to it. This is done by
edu.wustl.cab2b.server.queryengine.LazyInitializer. A complete record is represented by
the interface edu.wustl.cab2b.common.queryengine.resul.IFullyInitializedRecord.

2. Maintain the handle as part of a partially initialized record. A partially initialized record is
represented by the interface
edu.wustl.cab2b.common.queryengine.result.IPartiallyInitializedRecord.

3. Obtain data for the uninitialized portions by providing a handle to the fully initialized
record, and parameters that identify the portions to fetch. The lazy parameters are
represented by edu.wustl.cab2b.common.queryengine.result.ILazyParams; the method
that does this lazy initialization is LazyInitializer.getView().

Details of these interfaces and classes follow:

edu.wustl.cab2b.server.queryengine.LazyInitializer

• int register(IFullyInitializedRecord fir) Registers a fully initialized record, and provides a
handle to it. Currently, the record is stored in an in-memory map.

• IPartiallyInitializedRecord getView(int handle, ILazyParams params) Identifies the fully
initialized record corresponding to the handle, and requests it to provide the
IPartiallyInitializedRecord corresponding to given ILazyParams.

• IFullyInitializedRecord getFullyInitializedRecord(int handle) Returns the
IFullyInitializedRecord corresponding to the handle.

• void unregister(int handle Unregisters the record. Currently, the record is removed from
the in-memory map.

edu.wustl.cab2b.common.queryengine.result.IFullyInitializedRecord:

• IPartiallyInitializedRecord view(ILazyParams params, int handle)
Returns the partially initialized record that corresponds to the parameters. The handle is
passed on to the newly created IPartiallyInitializedRecord.

edu.wustl.cab2b.common.queryengine.result.IPartiallyInitializedRecord

• int handle() The handle to the fully initialized record.

• ILazyParams initializationParams() The parameters with which this record was created.

Example – BioAssayData
A BioAssayData record contains a biodatacube which is a three-dimensional array. The
dimensions of this array can be quite large, and thus the cube can require a huge amount of
memory. Lazy initialization of this record is done by lazily initializing the contents of this array
based on the indexes of the cells the user is viewing.

Following interfaces thus represent the partially and fully initialized records respectively:

• cab2b.common.caarray.IPartiallyInitializedBioAssayDataRecord

• cab2b.common.caarray.IFullyInitializedBioAssayDataRecord

Refer to Record Customization for the class diagram showing the genealogy of these interfaces.
The lazy parameters for this scenario are represented by LazyParams from package
edu.wustl.cab2b.common.queryengine.result.I3DDataRecord

caBench-To-Bedside Design Document

 Page 31

sd lazy

BioAssayDataResultTransformer

LazyInitializer

this partially initial ized record is created

with handle obtained from previous call .

The biodatacube is inited to be empty.

QueryExecutorClient

Call happens via

bean (not shown)

intermediate query building

steps not shown.

this call is made for each record obtained in the

results.

UtilityBean

«interface»

IFullyInitializedBioAssayDataRecord

this partially inited record corresponds to the params provided; e.g. only those

cel ls of the cube are populated whose data is about to be shown to the user in

the table on the UI

this cal l is made when user is viewing

a biodatacube in tabular format; as he

scrolls up/down or left/right in the

table, this cal l is made to fetch data

for the new cells.

this call is made when i t is safe to

dispose of this record; for example

when user closes the query wizard

the record correponding to the

handle is disposed

IQueryResult<?>:= executeQuery()

new

getResults(dcqlQuery, targetEntity);

new

register(ful lRecord)

handle

IPartiallyInitial izedBioAssayDataRecord:= createCaArrayRecord()

IQueryResult<IPartial lyInitializedBioAssayDataRecord>

IQueryResult<IPartiallyInitial izedBioAssayDataRecord>

getView(int handle, ILazyParams params)

getView(handle,params)

getFullyInitial ial izedRecord(handle)

view(params, handle)

IPartiallyIni tializedBioAssayDataRecord:=

IPartiallyInitial izedBioAssayDataRecord:=

IPartiallyInitializedBioAssayDataRecord

unregister(handle)

unregister(handle)

Figure 18 Sequence diagram - Lazy Initialization

caBench-To-Bedside Design Document

 Page 32

7 Custom UI Components

7.1 Overview
The usual practice of UI development is to use standard UI controls with their default
properties and behavior. The problems with this approach are:

1. If the application requires a property (e.g. font for labels) to be standardized across
the application a change is needed at every place wherever that component
instantiated. This is quite cumbersome.

2. Sometimes standard component doesn’t provide required functionality or provides
limited functionality

These are avoided by creating several components (see table) by customizing and
extending the standard Swing and SwingX components. Customization includes modifying
some default property and/or behavior for the standard component to suit the
requirements.

The Usability Engineering group makes UI standards available. For example, all button
labels should be of ‘Arial 10pt Normal’. This is achieved by defining ‘Cab2bButton’ that
extends ‘JButton’ and setting the font at the time of creation. So whenever a ‘Cab2bButton’
is created, it comes with customized font by default. Also, font can be changed very easily
by only modifying ‘Cab2bButton’ class and the change would be reflected across all
buttons in the application.

7.2 List of customized components

Original
Component

Customized
Component Name

Customization details

Usability
related?

JButton Cab2bButton Default font and preferred size is set Yes

JLabel Cab2bLabel Default font, background color is set Yes

JCheckBox Cab2bCheckBox Default font, background color is set Yes

JComboBox Cab2bComboBox Default font, background color and
preferred size are set.

Yes

JRadioButton Cab2bRadioButton Default font, background color is set. Yes

JTextField Cab2bTextField Default preferred size set. Yes

JFormattedTe
xtField

Cab2bFormatted-
TextField

Customized to handle field validation
like, field accepts only positive
integer, floats and alphanumeric
strings.

No

JXHyperlink Cab2bHyperlink
Cab2bHyperlinkUI

Customized by default to show the
hyperlink text underlined and each
hyperlink associated with a user
object. Default visited and un-visited
hyperlink color is set as per
recommendation.

Associating user
object with
hyperlink is
application
specific.

JXDatePicker Cab2bDatePicker Default preferred size is set. Yes

JXPanel Cab2bPanel Panel background color is by default
se t to white. It can be changed to any
other color by passing the appropriate
Color object.

Yes

JXTitledPanel Cab2bTitledPanel This panel background color is by
default set to white.

Yes

caBench-To-Bedside Design Document

 Page 33

TableModel LazyTableModel Added the ability to fetch table data
as and when needed to display huge
data in table form.

No

JXTable Cab2bTable
Cab2bDefaultTable
Model

By default, “select all” of table rows
are enabled. Shows long texts in a
text area with text wrapping.

No

 StackedBox Customized to look as per the Visual
Design specification.

Yes

Table 1 customized components in the caB2B application

7.3 Lazy Table Model
This is component developed for visualization of huge spreadsheet data. It only fetches data that
is currently required. It additionally caches the data to improve performance. Classes involved are

• LazyDataSourceInterface: This is used by LazyTableModelInterface to fetch the data only
when required. It provides the description of the data like number of rows, number of columns
etc. The method getData(int row,int column) has a responsibility to fetch the data from the
source (that may be a servlet, ejb or anything). Additionally it can cache the data.

• AbstractLazyDataSource: provides a sample implementation of the getData method. It
converts the location of the required data to the cacheable page unit. Then fetches the data
of the page from the data source, caches the page and extract required data from the page.

• BDQDataSource: This is the implementation of the AbstractLazyDataSource for bio data
cube (BDQ) object. It provides implementation to fetch the portion of data for BDQ from the
server and to extract the required data from the page. It converts x and y co-ordinate into the
dimensions of the 3D representation of the BDQ object.

• PageDimension is used by data source to paginate the data. It gives the dimension of the
pages of a particular data. Page represents a small block of data. The huge data can be
broken down into the pages. PageInfo represents metadata about the page. It provides
information like starting x and Y coordinate of a page in original data.

• LazyTableModelInterface: This is marker interface for the table models that uses
LazyDataSourceInterface to fetch actual data.

• DefaultLazyTableModel: delegates all calls to the contained data source.

• CacheInterface: provides method to cache the pages of the data. This is used by data
source.

• BucketCache: This is implementation of the cache based on bucket of the pages. It keeps
the fixed bucket of the pages. Each page can go into a particular bucket depending on its
coordinate. If a particular bucket is already occupied, the new page replaces existing page
from that location.

• MatrixCache: This is similar to bucketCache with two dimensional bucket structures. Pages
are put into a particular location of the matrix based on its coordinate. If it is already occupied
the new page replaces existing page from that location.

caBench-To-Bedside Design Document

 Page 34

Figure 19 Classes Involved in Lazy Table Model component

This component has been used to display Bio Data cube object. Following sequence diagram
shows further details.

caBench-To-Bedside Design Document

 Page 35

Figure 20 Flow of events in displaying BDQ

caBench-To-Bedside Design Document

 Page 36

8 Dynamic UI generation for add/edit limits

8.1 Overview
The ‘Add Limit’ / ‘Edit Limit’ functionality of search data module allows the user to specify
rules/constraints on the attributes of a selected entity like “edu.wustl.fe.Gene” or “Gene
Annotation” respectively. Once the user decides the category on which to add a limit, the system
auto generates the user interface with following properties:

- Alphabetically sorted list of attributes

- Attributes name are modified to make them user friendly manner (for example,
clinicalDiagnosis should be Clinical Diagnosis)

- Based on the data type of each attribute

- Applicable set of operators are visible

- Data type based validation

- If the attribute has permissible values, these are displayed in a multi-select list box.

The section below describes the design details of dynamic UI generation for the Add / Edit limit
functionality

8.2 Design
The dynamic UI generation is based on the following principles:

• The metadata for each attribute contains all the required information like data type and
permissible values

• An XML file contains information about the display names for operators and UI
properties.

For each entity the UI is auto generated based on its metadata and the XML file configuration

8.2.1 Metadata representation
Before we go into details of dynamic UI generation, is it important to understand how
metadata for an entity is represented. For more details on these classes please refer to
section Metadata Repository.

8.2.2 Dynamic UI configuration XML
This requirement needs mapping of attribute data type to all the information needed to
visually render the UI component corresponding to that attribute. The information for
rendering includes the following:

• List of operators for a given data type and context (enumerated or non-enumerated)

• The class name for the actual UI component to be instantiated, again for a given type
and context.

• The UI component representing any attribute should show user friendly attribute
name (i.e. by parsing the camel case words)

• Condition selection drop-down box

• Control to specify values for selected condition. This portion of the component is
variable and changes according to the data type and context of the attribute (e.g. all
attributes that contain enumeration, this would always be shown as a multi-select list
box)

caBench-To-Bedside Design Document

 Page 37

This mapping is captured in a configuration file in XML format. Reasons for the XML
configuration file.

• Defining a configuration file to capture the mapping information helps abstract that
information out of the code. This means some of the UI rendering information
captured in the configuration file can change without having to compile the code.

• XML allows for validations by defining a DTD. The validation can further be made
strict by defining data as actual xml elements. Thus (See Figure 3.0), the DTD
mandates that the XML document have a data element for all the data types and
include an operator list for all of them.

Figure 21 Snippet of DTD used for dynamic UI configuration XML

data-type-control - This is the root node of the control and can contain enumerated or non-
enumerated nodes as children
enumerated - This tag is parent of all the enumerated data types.
non-enumerated - This tag is parent of all the non-enumerated data type
string, number, boolean - these tags are the actual data type nodes which contain information
such as operators associated with this node, display names of these operators, and the
component which will render the attribute of this data type. Refer to file dynamicUI.xml for
this.

8.2.3 Auto generation of UI
The configuration XML file is parsed using a DOM parser and the information is organized
into the maps shown in the table below. This is a one-time activity and happens for the first
instance, when UI needs to be dynamically generated for a class or category. All the logic is
encapsulated in the ParseXMLFile class.

Map type Details

Enum -Operator map
Note: ‘Enum’ in this column implies an
attribute containing permissible values.

Key = Enumeration representing data type.
Value = Collection of enumerations representing
operators

Enum-Component map Key = Enumeration representing data type.
Value = Name of UI component to be rendered

Non-Enum-Operator map Key = Enumeration representing data type.
Value = Collection of enumerations representing
operators

Non-Enumerated-Component map Key = Enumeration representing data type.
Value = Name of UI component to be rendered

Given an ‘EntityInterface’, for every ‘AttributeInterface’ contained therein, the dynamic UI
generation generates the UI component (details given here), based on the metadata of the
attribute. The following flow-chart explains details for this activity:

caBench-To-Bedside Design Document

 Page 38

Figure 22 Detailed steps for generating UI component for an attribute

The SwingUIManager class has a static method generateUIPanel(EntityInterface) that iterates
over the collection of attributes and processes metadata information based on the flow chart
above to generate the UI component (Cab2bPanel) for that attribute. It then returns an array of
these UI components that are added to a panel to represent the Add/Limit UI screen.

The UML diagram below shows the different classes involved in dynamic UI generation

IComponent - UI component should provide API to get selected condition, corresponding values
and the attribute entity it represents. Thus one needs to have a common interface containing
these APIs, which every data type specific UI component should implement. This is the interface
containing methods to get/set UI component details for every attribute type.

caBench-To-Bedside Design Document

 Page 39

Figure 23 Class diagram for classes participating in dynamic UI generation

AbstarctTypePanel - This is an abstract UI component class, which contains common
functionalities needed by all the attribute type UI components. It implements the IComponent.
This component contains APIs to set UI for the condition list and user-friendly attribute names.
Additionally it has abstract methods getFirstComponent() and getSecondComponent() to facilitate
implementing class to provide the specific JComponent object specific to the specific data type.
For each data type there is one class which extends this class, for example NumberTypePane for
Numeric data types like integer, long, and double. StringTypePanel for String data type

caBench-To-Bedside Design Document

 Page 40

9 Visual Query Interface OR Diagrammatic (DAG) view

9.1 Overview
The primary goal of this feature is to allow the user to do the following:

• View the category constraints added to the query in the form of graph nodes.

• Link the selected category constraints visually

• Edit / delete query constraints

• Resolve ambiguities if multiple paths are available between the source and target class /
category constraints to link.

• The textual representation of the query expression

The basic design of the DAG view is to visually represent each constraint (i.e. a limit on class or
category) as a node of the graph and allow linking of constraints as edges of the graph.
NetBean’s Graph Library supports visualization and editing of node-edge structures using drag
and drop (org-netbeans-graph.jar), and it is platform independent.

This section describes the design for the same. Chapters Metadata search and Query Object are
perquisites for this chapter.

The diagram (Figure 24 Basic workflow in the DAG) shows the basic workflow of the DAG view.
The sequence of steps involved in the DAG view is as below:

1. User searches for the classes / categories for which he wants to form a query.

2. From the returned results, the user selects the class / category of interest. The Add Limit
page shows all the attributes associated with selected class / category.

3. User specifies constraints on attributes and adds this constrained entity to query graph.

4. User may search and add different constraints to the query by repeating steps 1-3

5. User may select any two constrained entities and link them using the ‘Connect Nodes’
button.

6. If multiple paths are available for selected nodes, user may select multiple paths to
connect these entities.

7. User may repeat step 6, to connect different constrained entities in the query graph

8. User may edit constrained entity and change the rules / constraints added on the
attributes of the entity.

NOTE: Two entity nodes can be linked only if adding the selected path doesn’t form a cycle in the
query graph.

caBench-To-Bedside Design Document

 Page 41

Figure 24 Basic workflow in the DAG

9.2 User Interface Design
This section describes the design of the user interface of the DAG view. It describes the classes
that constitute visualization of the DAG view. The class diagram below details the classes and
interactions amongst them.

caBench-To-Bedside Design Document

 Page 42

Figure 25 Class diagram for classes in the DAG view

• MainDagPanel: This class forms the core of the DAG view and is responsible for
handling different user actions, related to query construction and updating the visual
query graph. To display DAG on panel this class creates a JComponent that renders
nodes and links using createView(…) method on GraphFactory from NetBean’s graph
library.Whenever a user adds a limit UpdateGraph(…) method adds an IExpression
object representing the constrained category to the graph.

o LinkNode(…) method links two nodes if the caB2B server has a valid path
between the selected entities. If the system contains multiple paths between
selected expressions, the ambiguity resolver allows the user to select paths of
interest and links nodes with selected paths.

o deletePath() and deleteExpression() methods delete the selected link and
expression respectively from the UI as well as the backend query object.
GetExpressionString () returns the textual representation of the IQuery object.
This class also holds a reference of the IClientQueryBuilder (a wrapper over the
IQuery). The backend query building section describes this in detail.

• DagControlPanel: This class controls different user activities such as liking selected
nodes and clearing the DAG view.

• ExpressionPanel: This class provides the textual representation query object to the
user.

Apart from these UI classes, there are classes, which hold UI details of every link and node that is
rendered on the DAG panel. These classes and their details are described as follows:

• GenericNode, ClassNode and ClassNodeRender are involved in implementing the
graph node functionality. These are the classes which hold information such as how to

caBench-To-Bedside Design Document

 Page 43

render the node, what expression the node holds, and what other nodes are linked to this
expression.

• SimpleLinkRenderer and OrthogonalLinkRouterLinkRenderer implement the graph
link related functionality. These classes mainly perform rendering of graph link.

• IconPortRenderer and SimplePortRenderer are responsible for rendering connection
ports. In order to link two nodes, one needs to add ports to the source and destination
nodes.

Ambiguity resolver UI classes
This provides a user interface to show all the possible paths between selected source and target
expression entities and allows the user to select paths of interest. This functionality queries the
caB2B server to get all the available paths between source and destination expression entities.
The class diagram below shows classes involved in implementing this functionality.

Figure 26 Class diagram for classes related to ambiguity resolver

• ResolveAmbiguity: This class queries caB2B server to get all the possible paths
between source and destination entities and pops up a dialog box containing an instance
of AvailablePathsPanel in order to allow the user to select multiple paths. In case of a
single path, this class doesn’t show this dialog box.

• AvailablePathsPanel: This panel holds the UI to show ambiguous paths.

• AmbiguityObject: The bean class holding the details of the entities between which the
system has to find paths and resolve the ambiguity.

• AmbiguityPathResolverPanel This displays list of available paths for the current
source, target entity and allows user to select one or more paths from it.

9.3 Query Building
The data of the visually constructed query is stored in an IQuery object. DAG holds a reference to
this object. The IQuery object needs to be modified whenever the user links nodes, adds or

caBench-To-Bedside Design Document

 Page 44

deletes links or nodes from the view. The IClientQueryBuilder interface defines method to
update the query object according to the user’s actions. ClientQueryBuilder implements the
IClientQueryBuilder. The class diagram below shows different methods on interface.

addExpressio adds the constrained category element to query object when the user adds a limit.
addPath adds the associations between source and destination entities specified by an IPath
object. removeExpression method removes the expression with the specified ExpressionId from
the graph. removeAssociation removes specified association between two ExpressionIds.

cd DAG Graph

«interface»

IClientQueryBuilderInterface

+ getQuery() : IQuery

+ setQuery(IQuery) : void

+ addExpression(IRule) : IExpressionId

+ editExpression(IExpressionId, IRule) : IExpression

+ removeExpression(IExpressionId) : IExpression

+ addPath(IExpressionId, IExpressionId, IPath) : List<IExpressionId>

+ addAssociation(IExpressionId, IExpressionId, IAssociation) : void

+ removeAssociation(IExpressionId, IExpressionId) : boolean

+ setLogicalConnector(IExpressionId, IExpressionId, LogicalOperator, boolean) : void

+ createExpressionCopy(IExpression) : IExpressionId

+ getEntities() : Collection<EntityInterface>

+ createDummyExpression(EntityInterface) : IExpressionId

+ addRule(List<AttributeInterface>, List<String>, List<String>, List<String>) : IExpressionId

+ addRule(List<AttributeInterface>, List<String>, List<List<String>>) : IExpressionId

+ addParantheses(IExpressionId, IExpressionId, IExpressionId) : void

+ removeParantheses(IExpressionId, IExpressionId, IExpressionId) : void

+ setOutputForQuery(EntityInterface) : void

+ setOutputForQueryForSpecifiedURL(EntityInterface, String) : void

+ getVisibleExressionIds() : Set<IExpressionId>

+ addExressionIdToVisibleList(IExpressionId) : void

+ removeExressionIdFromVisibleList(IExpressionId) : void

+ isPathCreatesCyclicGraph(IExpressionId, IExpressionId, IPath) : boolean

Figure 27 Client query builder interface for client side query building

caBench-To-Bedside Design Document

 Page 45

10 Pagination Swing Component

10.1 Overview
In caB2B there are several instances where the user has to view large data sets. The examples
of such instances include viewing results of a metadata search or viewing the results of a query.
Traditionally, viewing of such large data sets is facilitated by enabling scrolling of the results.
However, this approach makes it extremely cumbersome for the end-user to view the results,
especially in case of larger data sets.

A better approach would be to paginate the results, much like the numbers of a book. This
presents an organized view of the results and makes browsing large data sets extremely
convenient.

Since it is required to show a paginated view at several places in the application, it becomes
paramount to design a generic component (hence forth referred to as Pagination component) that
can be re-used across all screens. In other words the nature of data to be paginated should not
matter to the component.

In addition, it should be also being possible to configure the pagination component, both during
initialization as well as dynamically, to paginate results based on some sorting criterion. The
sorting criterion could vary from alphabetical to some context specific sorting (for e.g. sorting a
category search based on the relevance of use). Thus the design for the generic component
should be flexible enough to plug the different sorting algorithms, depending on the context in
which it is used.

It should also be possible for the generic pagination component to select data elements for
certain context-specific operations (like the ability to select data elements to add to the data list
from the query results) by simply turning off or on the feature at the time of configuring and
initializing the component in the application.

Given the generic nature of the component, the pagination component should dynamically
compute the amount of space available on the screen and compute the number of elements to be
displayed on a single page and consequently the total number of pages.

The pagination component is designed based on all the considerations mentioned above. Each
element in the data set is displayed as a hyper-link with the provision to display some description
associated with it. Additionally, the design allows for custom behavior for hyper-link clicks.

10.2 Design Details
The basic design for this component is based on the Swing UI MVC pattern; please refer to the
UML Diagrams shown below.

10.2.1 View
The JPagination class constitutes the view for the component. It is an instance of JPanel and
is further made up of the following components:

• JGroupActionPanel which extends JPanel and has hyperlinks which can perform group
selection operation on the page elements. More is explained on group selection actions
in Controller part.

• PagePanel which is a JPanel which is used to display the data elements for a given
page. Each display element is again an instance of JPageElement which extends JPanel.

caBench-To-Bedside Design Document

 Page 46

• JPageBar extends JPanel, contains hyperlinks to support navigation across pages.

The above three sub components can be arranged in any order.
The page elements which are displayed in page panel can be displayed in different
configurations, the two important configurations are:

1. A linear list of page elements one below the other displayed in the page panel
2. A grid of page elements displayed in a matrix format. I.e. n page elements by m page

elements.
Pagination component with three sub-component and check boxes for selections

Figure 28 Snapshot of a Pagination component

10.2.2 Controller

• Selections

Some of the group selection actions available on the page elements are:

1. Select All – by clicking on “Select All” hyperlink available in the group action
panel, user can select all the visible and in-visible page elements.

2. Clear All – by clicking on the “Clear All” hyperlink available in the group action
panel, user can clear all the selections they have made in the visible and in-
visible pages.

3. Invert All – by clicking on the “Invert All” hyperlink available in the group action
panel, user can invert the selections made in all visible and in-visible pages.
Using Invert All action second time should bring back the original selections.

caBench-To-Bedside Design Document

 Page 47

Group action panel can also be designed to have hyperlinks to select page elements
that are in the visible page only, similarly to clear and invert the selections in the
current or visible page only.

PageSelectionModel provides the backend for the above actions; there are other
APIs in this class to get status on the current selections like

1. Number selections made till now, in all pages.
2. Is any element selected or not.
3. Is selection empty

JPagination provides API to add and remove PageSelectionListener to it. This
enables user to listen for element selection, the event received is
PageSelectionEvent if any page elements selection changes.

JPagination has API’s to dynamically turn on and off the pagination component’s
elements selectable or not.

• Navigation
There are basically three kinds of hyperlinks in the page bar to aide navigation

1. “Next Page”, “Previous Page” hyperlinks usually represented by “>”, “<”
characters are used to sequentially navigate forward or backward through pages.
User click on these hyperlinks results in page panel showing the corresponding
page.

2. User can directly view any page by clicking a page index hyperlink. Page index
hyperlinks will be numbers if the pager is numeric pager, alphabets if the pager is
alphabetic pager, etc. These hyperlinks provide direct access to the desired
page, unlike the Next Page”, “Previous Page” hyperlinks which are for sequential
access.

3. Since there can be possibly many page index hyperlinks, page bar usually shows
a small set of page index hyperlinks(5,10, etc) out of the all page indexes. So to
provide navigation through these page index hyperlinks, there is “Next Page
Indices” and “Previous Page Indices” hyperlinks. User action on these hyperlinks
updates the current page indices hyperlinks that are visible.

The text representing the “Next Page”, “Previous Page”, “Next Page Indices” and
“Previous Page Indices” hyperlinks can be changed to any string or characters at the
time of instantiation or dynamically(yet to implement).

Mouse Wheel Support

JPagination implements MouseWheelListener interface to provide fast sequential
navigation through pages. Mouse wheel action automatically updates the current
page index highlighting in the page bar.

Automatic Page Resize:

JPagination when provided with its parent components reference can automatically
resize the pages(i.e. element per page) depending on the free space available with
the parent component. This functionality is implemented by adding
ComponentListener to the parent component and firing appropriate events when the
parent component resizes in the action listener method

10.2.3 Model
The Pager interface and the implementing classes such as PaginationModel essentially form the
data model. The Pager is an interface to the pagination model. The AbstractPager is an abstract
class which provides the skeletal implementation for the Pager interface

caBench-To-Bedside Design Document

 Page 48

AbstractPager also provides definition for final method subPage(). This method will be called only
when the pager is non-numeric, to sub paginate the main pages whose size is more than desired.
AbstractPager also keeps a copy of original collection of page elements intact, since this is
needed for future use. Events like, changing the pager at runtime needs the original page
elements collection (This functionality is not implemented in the current version).

AbstractPager has a map data structure which maps page index to a small collection of page
elements called page. The Actually data structures are HashMap for map, String for page index
and Vector for page. AbstractPager also keeps a ready list of all page indices that are there in the
Map data structure as map’s keys.

All concrete pager classes should extend the AbstractPager class and compulsorily override the
page() method, with their own logic to paginate the elements except NumericPager.

The reason PaginationModel implements the Pager interface is to provide consistent API’s to the
view part. If PaginationModel doesn’t conform to the Pager interface there can be chances where
we introduce some methods in PaginationModel which are not there in Pager instances. The
other way of think at it is, since Delegation in the patter used in PaginationModel it becomes a
kind of norm to have all the methods which are available in Pager be present in PaginationModel.

Thus the pagination model and paginating process is clearly separated from the view part by
using Pager interface and its concrete classes.
Pagination Levels: Pagination should be done at two levels

1) Level-1 Pagination: Can be any one of Numeric, Alphabetic, Keywords, Frequency, and
etc based Pagination.

2) Level-2 Pagination: Is always a Numeric Pagination depending on the Level-1
Pagination. If Level-1 pagination is a Numeric Pagination then there is no need to have
Level-2 Pagination. If Level-1 pagination is anything other than Numeric, we need Level-2
numeric pagination since non-numeric pagination doesn’t conform to the condition that a
page should have fixed number of page elements.

Thus level-1 pager is variable, it can be any kind of pagination, but level-2 pagination is always a
numeric pager, if level-1 pager in non-numeric. And this probably explains the reason why the
subPage method in AbstractPager is final, so that the actually concrete classes like
AlphbeticPager can not override it, even by mistake.

If level-1 pager is a numeric pager then there is no work for sub page method.

Example: Let us consider Alphabetic pagination as the Level-1 pagination, there may be cases
like page index “A” having a 20 page elements which can’t be displayed on the screen without a
scroll pane, but page index “B” may have only 2 page elements which will fit in one single page.

But for page with index “A” we have to again break the page with 20 elements into much smaller
page. Numeric Pager is the best choice for this kind of Level-2 pagination.
Level-2 pagination depends on the page size of the selected page in the Level-1 pagination.
Hence the page with index “A” the numeric pager may provide numeric page indices 1,2,3,4 for
page with index “A”, but for page with index “B” there is no need of second level page indices.
Note: Level-2 paging (sub paging) for non-numeric pager is not yet implemented.

caBench-To-Bedside Design Document

 Page 49

10.2.4 UML Diagrams

Figure 29 Classes involved in Pagination component

Sequence Diagram

The sequence diagram above describes the way in which pagination component is
initialized first. The input to pagination component is a collection of page elements, each
page element implementing PageElement interface

caBench-To-Bedside Design Document

 Page 50

Figure 30 Pagination Sequence Diagram

The steps of event happening while constructing pagination component is explained as below:

1. JPagination accepts collection of elements as the parameter.

2. Creates a new instance of PaginationModel passing elements collection.

3. PaginationModel in-turn passes the elements collection to a subclass of Pager interface.

4. Pager internally calls the page() method to paginates the elements collection depending
on some criteria.

5. JPagination then gets all page indices from the pager to construct JPageBar sub
component.

6. JPagination gets first page from the pager to construct the page panel sub component.

7. JPagination constructs JGroupActionPanel sub component, and adds all these three
subcomponents to it.

Pagination Usage in caB2B:
In the current version of caB2B, pagination component is used in two places

1. In the advanced search feature to show the search result. Here, selection of page
elements is not needed; hence elements don’t have check boxes and the group action
panel. This is achieved by calling appropriate API’s in the JPagination class.

caBench-To-Bedside Design Document

 Page 51

2. In View search result feature to show the results got from data services. Here selection of
page elements is important, since user would like to add the selected elements to the
data list. Hence check boxes and group action panels are enabled by calling appropriate
API’s in the JPagination class.

These are the two instances which highlight the fact that Pagination component is generic in
nature, which can be used in scenarios where long list of data needs to be displayed in the GUI.

caBench-To-Bedside Design Document

 Page 52

11 Search Data Wizard

11.1 Overview
The search data for experiment dialog is a wizard based UI that allows the end-user to
sequentially follow all the steps required to build, fire and view the results of a caB2B query. In
this document, we shall understand the basic composition of the wizard as well as the navigation
mechanism while moving from one step to another.

11.2 Class Diagram
The following is the class diagram that illustrates the composition of the search dialog wizard.

Figure 31 Class diagram for the Search dialog wizard

MainSearchPanel is the container class that represents the main wizard UI. It is an instance of
Cab2bPanel and uses an instance of BorderLayout to manage the layout of its components. It is
made up of the SearchTopPanel (added to the north region), the SearchCenterPanel (added to
the center region) and the SearchNavigationPanel (added to the south region). The component is
initialized at creation time.

The class provides getter methods to access each of these panels, so as to facilitate
communication between the panels (For e.g. it is required for the SearchNavigationPanel to
communicate with the SearchTopPanel). It also stores a reference to a cab2b implementation of
the IclientQueryBuilderInterface, so that the reference can be available at every stage of the
query building.
Cab2bPanel is a customized panel so that certain properties (like background color) can be
centrally set and used across the application.

SearchTopPanel is the component that forms the top section of the wizard and its function is to
visually indicate to the user the step that he is currently performing.

caBench-To-Bedside Design Document

 Page 53

This component is an instance of Cab2bPanel and is composed of as many numbers of panels
as there are steps in the wizard (in this case 5). It uses an instance of GridLayout to manage the
layout of the child panels. Each panel is made of an instance of Cab2bLabel containing the
appropriate text for the step in the wizard. The component is initialized at creation time such that
panel corresponding to step1 has a white background and no border, while the panels for the
remaining steps have a blue background and a LineBorder, which is black in color. The panel
with the white background is always used to indicate to the end-user the step that he/she is
currently performing.

The setFocus (int index, boolean blnForward) public API sets the background color of the panel
corresponding to the step indicated by the index parameter, to white. The boolean parameter is
used to indicate the traversal of the navigation so the adjacent panel (to the left or right
depending on direction of traversal) can be reset.

SearchCenterPanel is an instance of Cab2bPanel and is a container class for all the UI
components needed for each step in the wizard. The UI component for each step is again an
instance Cab2bPanel; thereby making this a container of as many Cab2bPanels as there are
steps.

It uses an instance of CardLayout to manage all the cards or in other words to manage all the
Cab2bPanels needed at each step of the wizard. This component is initialized to contain and
show the first card corresponding to the first step. Subsequent cards are added dynamically
based on action taken in previous steps and shown as and when the user navigates across
steps. The component also maintains state information like the currently selected card (the
current step the user is on), and provided getter and setter methods for accessing and setting the
value respectively.

SearchNavigationPanel is the component that provides functionality to navigate across the
wizard. It is an instance of Cab2bPanel and uses an instance of FlowLayout to manage the layout
of all its child components (instances of Cab2bButtons to facilitate navigation)

The component is also the event listener for its child buttons. For all navigations in the forward
direction (refer to sequence diagram), it queries the SearchCenterPanel to get the current step. It
then loads and adds the UI component corresponding to the next step to the SearchCenterPanel,
if that is not already added.
However, there is an exception to the above action. In case of viewing search results, the UI
component for viewing search results is always newly created and added.

For navigations in the reverse direction the component merely asks the SearchCenterPanel to
show the previous card. If the next or previous component is successfully loaded and added, it
then calls the setFocus() API on the SearchTopPanel .

11.3 Sequence Diagram
The sequence diagram below illustrates the flow of control when the user chooses to navigate
from step1 to step2 (for the first time) in the wizard.

caBench-To-Bedside Design Document

 Page 54

Figure 32 sequence diagram for navigation from step1 to step2 in the wizard

caBench-To-Bedside Design Document

 Page 55

12 View Results
This section explains the classes involved in showing the query result.

Figure 33 Classes involved in displaying query results

• ViewSearchResultsPanel displays the result of the query in two ways. In a simple view
and a comprehensive view (not yet implemented).

• SimpleSearchResultBreadCrumbPanel represents one breadcrumb page of the result.
It contains result panel, a data list summary panel and a breadcrumb panel to return to
this result page. It contains result panel for a single object or list of object. It also provides
the implantation for the listener of the breadcrumb, to view the details of a particular
object and to show the related data.

• ResultPanel is an abstract class for the panel used to for the result. It provides the
operation like add to data list and apply data list.

• ViewSearchResultsSimplePanel is a panel to display the list of objects. When the result
of the query contains more than one object this panel is instantiated. It contains the
pagination component to show the result.

• ResultObjectDetailsPanel is a panel to display the details of single object. When the
result of the query contains a single object or when the detail of object is viewed, this
panel is instantiated. It uses ResultPanelFactory to create the panel which is applicable

caBench-To-Bedside Design Document

 Page 56

for the object to be shown. It also contains the reference to the applicable related data
panels.

• AbstractAssociatedDataPanel is the base class for all the data panels used for showing
associated (related) data. Its iniGUI() method creates the hyperlink for each of the related
data.

• IncomingAssociationDataPanel represents the data which is related by incoming
association for the object that is currently displayed.

• OutgoingAssociationDataPanel represents the data which is related by outgoing
association for the object that is currently displayed.

• InterModelAssociationDataPanel represents the data which is related by an inter model
association for the object that is currently displayed.

Figure 34 Order of instantiation of panels for view results

caBench-To-Bedside Design Document

 Page 57

13 Record Customization

13.1 Overview
A user-defined query, represented by the query object, is transformed to appropriate DCQL.
DCQLQueryResults obtained by executing this DCQL is then transformed into an IQueryResult.
IQueryResult is a caB2B-specific representation of the results. Logically, IQueryResult is a
collection of records (represented by IRecord’s). This chapter explains how this caB2B-specific
representation (i.e. IRecord) can be customized based on the application/category being queried.

The IRecord
IRecord is a map from an attribute to its value.

13.2 Why customize IRecord?
The default IRecord represents the record of a UML class, as obtained from a data service that
uses the default (de)serialization mechanisms of caGrid. A custom subtype of IRecord would be
defined to add more information to such a record. Such a need can arise due to following
reasons:

• Custom (de)serialization by data services
A service might in some cases return more information than can be represented by
IRecord. An example is the caArray service that returns identifiers of classes associated
to the target class. To store this information, a custom record has to be defined.

• Complex attributes
Some entities can have complex attributes which cannot be represented directly in
IRecord. For example,

o A BioAssayData record obtained from caArray data service has a bioDataCube
attribute. This is a three-dimensional array of objects.

o Each category record has other associated children category records.

13.3 Steps in customizing a record

1. Identify the entity or application for which the customized record has to be defined. Define
appropriate subtype of IRecord, say ICustomRecord.

2. Implement any of the following components related to this customization:

• Query result transformer: Responsible for transforming CQLResults into
ICustomRecord.

• Record details UI panel: Responsible for displaying ICustomRecord on the UI.

• Data list transformers: Specify how an ICustomRecord is persisted as part of a
datalist

o Data list saver: Responsible for saving an ICustomRecord when it is part of a
data list.

o Data list retriever: Responsible for creating an appropriate ICustomRecord
while retrieving a data list.

3. Register these implementations in the configuration xml “ResultConfiguration.xml”.

caBench-To-Bedside Design Document

 Page 58

13.4 Result Configuration XML

Figure 35 Sample ResultConfiguration.xml

Note that the following are provided by caB2B:

• Customizations for “CategoryEntityGroup”

• caB2B defaults (the outermost default tag)

caArray is an example of a custom-extension. caArray has its own default query-result-transfomer
that overrides the caB2B default query-result-transformer. But caArray needs customized result-
renderers and datalist-transformers for the class BioAssayData.

13.4.1 ResultConfigurationParser
This is a singleton class which parses the ResultConfiguration.xml file and provides following
methods for accessing the entries. If no entry is found for a given entity, the caB2B default is
returned.

• getResultRenderer(String applicationName, String entityName)

• getResultTransformer(String applicationName, String entityName)

• getDataListSaver(String applicationName, String entityName)

• getDataListRetriever(String applicationName, String entityName)

caBench-To-Bedside Design Document

 Page 59

13.5 IRecord and its extensions

Figure 36 IRecord and its extensions

Following are the basic interfaces; other interfaces are either markers or mixins.

• IRecord: The most basic interface; it represents a record as a set of attribute-value pairs.

caBench-To-Bedside Design Document

 Page 60

• IRecordWithAssociatedIdentifiers: Represents a record that can provide identifiers of
associated classes as well.

• I3DDataRecord: Represents a record that has additional three-dimensional data.
Methods provide the 3D matrix, and metadata about the dimensions.

• IPartiallyInitializedRecord and IFullyInitializedRecord: These interfaces are used for
lazily initializing a record. See Lazy Table Model (Chapter Custom UI components) for
more details.

• ICategorialClassRecord: Represents the records of a category. The records form a tree;
the structure of the tree corresponds to the tree of classes in the category.

13.6 Query Result Transformers
A query result transformer is defined by the interface
edu.wustl.cab2b.server.queryengine.resulttransformers.IQueryResultTransfomer<R extends
IRecord, C extends ICategorialClassRecord> and is responsible for executing a DCQL and
transforming the results into an appropriate IQueryResult. Following are the methods in
IQueryResultTransformer:

• IQueryResult<R> getResults(DCQLQuery query, EntityInterface targetEntity);
<R> the type of records created when executing a query for a class.

Parameters:
o query the DCQL.
o targetEntity the target entity (corresponds to the target object of the dcql).

• IQueryResult<C> getCategoryResults(DCQLQuery query, CategorialClass
categorialClass);
 <C> the type of records created when executing a query for a category.
Parameters:

o query the DCQL whose target object corresponds to the actual UML class
represented by the categorial class.

o categorialClass the categorial class.

Class diagrams for query result transformers are shown below.
Note: The text on the generalization links refers to type parameters e.g. declaration of
DefaultQueryResultTransformer is class DefaultQueryResultTransformer extends
AbstractQueryResultTransformer<IRecord, ICategorialClassRecord>
QueryResultTransformerFactory refers ResultConfigurationParser to obtain the appropriate
transformer.

13.6.1 Inbuilt implementations of IQueryResultTransformer

• AbstractQueryResultTransformer This abstract class provides a skeletal
implementation of a query result transformer. Concrete implementations need only
implement the createRecords() and createCategoryRecords() methods.

Additional hooks are provided and can be used to customize the creation and population
of the records in the result.

• DefaultQueryResultTransformer This is the caB2B default query result transformer. It
parses the gov.nih.nci.cagrid.cqlresultset.CQLQueryResults xml and extracts the values
for the attributes of the target entity. The records in the results are of the basic types
IRecord and ICategorialClassRecord.

caBench-To-Bedside Design Document

 Page 61

Figure 37 Query Result Transformers

13.6.2 Customization example – caArray
The interface cab2b.server.caarray.resulttransformer.ICaArrayRecord is used to represent a
record of the caArray application. As explained previously, the caArray service returns identifiers
of classes associated to the target class. Thus, an application-level transformer is defined for
caArray that uses the caArray deserializers and reads this information.

• AbstractCaArrayResultTransfomer: Provides an implementation of the method
createRecords() of AbstractQueryResultTransformer. It also handles the deserialization
of the caArray results xml into objects and transforms these objects to ICaarrayRecord
using reflection.

• DefaultCaArrayResultTransformer: This is the caArray application level default
transformer.

• BioAssayDataResultTransformer: The caArray service returns a biodata cube as data
associated to any BioAssayData. This transformer is required to read the biodatacube
and transform it to an appropriate IPartiallyInitializedBioAssayDataRecord. (For details of
lazy initialization, refer Lazy Table Model (Chapter Custom UI components)

caBench-To-Bedside Design Document

 Page 62

Figure 38 Query Result transformers

13.7 Data list transformers
A data list is saved using the dynamic extensions (DE) API. To do this, following transformations
are needed:

• From IRecord to DE specific representation of the record; this is needed while saving a
data list.

• From DE specific representation of a record to its corresponding IRecord; this is needed
while retrieving a data list.

The corresponding saver and retriever interfaces are

• edu.wustl.cab2b.server.datalist.DataListSaver

caBench-To-Bedside Design Document

 Page 63

• edu.wustl.cab2b.server.datalist.DataListRetrieve

These interfaces identify the operations that can vary depending on the record customization. For
saving a data list, a new entity is created for which records are populated. A saver customizes the
attributes/associations of the new entity that is created.

Figure 39 Data list savers and factory

For example, consider a specialization of IRecord called IFooBarRecord which represents
records for an entity FooBarEnt. IFooBarRecord provides additional info, say, through the method
getFoo(). In this case, we can have a FooBarSaver and FooBarRetriever.
FooBarSaver.getNewEntity() method will return an entity that contains all attributes from
FooBarEnt, and an additional attribute called "foo". The method FooBarSaver.getRecordAsMap()
will appropriately put an entry into the map for the attribute "foo", by reading the value from
IFooBarRecord.getFoo().

Then, while retrieving the records, the value of the attribute "foo" of the entity "FooBarEnt" will be
set for the property IFooBarRecord.foo by the corresponding retriever. This would be done in
the method FooBarRetriver. getEntityRecords(List<Long> recordIds).

caBench-To-Bedside Design Document

 Page 64

Figure 40 Data list retrievers

13.7.1 Inbuilt implementations of DataListSaver /
DataListRetriever

• AbstractDataListSaver: Skeletal implementation of a DataListSaver. A concrete
implementation need only implement the method populateNewEntity() to add attributes
and/or associations to the newly created entity.

• AbstractDataListRetriever: Skeletal implementation of a DataListRetriever. A concrete
implementation need only implement the method createRecord () to create an instance of
appropriate subtype of IRecord.

• DefaultDataListSaver: This is the default caB2B data list saver; the new entity it creates
is a clone of the original entity.

• DefaultDataListRetriever: This is the default caB2B data list retriever; it creates records
of the basic type IRecord.

• CategoryDataListSaver: New entities are created to represent the classes and
associations within the category and the records are stored into appropriate entities.

• CategoryDataListRetriever: The records from the multiple entities are grouped together
to reconstruct the ICategorialClassRecord’s.

caBench-To-Bedside Design Document

 Page 65

13.7.2 Customization example – caArray

Figure 41 Caarray extensions for data list operations

• BioAssayDataDataListSaver: As explained previously, the records of BioAssayData
contain a biodatacube which also has to be persisted. Currently, this saver creates blob
columns for the biodatacube and its metadata.

• BioAssayDataDataListRetriever: This retriever reads the data from the corresponding
blob columns and populates this in the IPartiallyInitializedBioAssayDataRecord
representation of the record.

13.8 Result Renderers
The result renders are used to render the complete details of single record.

ResultPanelFactory uses ResultConfigurationParser to obtain the appropriate renderer for the
given type of the record. The default render is edu.wustl.cab2b.client.ui.viewresults.
DefaultDetailedPanel. It accepts IRecords and renders attributes and its values in the form of a
table with a row for each attribute.

CategoryObjectDetailsPanel extends the functionality of default renderer to display the tree like
structure of the category. It accepts ICategorialClassRecord as an input. It displays the
attributes of the root categorical class using parent renderer (i.e. DefaultDetailedPanel). It
creates B2BTreeNode structure for the associated child categories. If a particular child has a
single record or one-one association with the parent its records are displayed along with the

caBench-To-Bedside Design Document

 Page 66

parent itself and not in a separate node. JTreeTable is the custom UI component that accepts
B2BTreeNode to display tree structure of the categories.

cd result panel models

CategoryObjectDetailsPanel

Cab2bPanel

R:extends IRecord

DefaultDetailedPanel

ThreeDResultObjectDetailsPanel

Figure 42 Result Panel Model

ThreeDResultObjectDetailsPanel is the renderer for the caArray object “Bio data cube”. It is a
three dimensional representation of micro array data. It uses LazyTableModel to show the huge
data.

Figure 43 Flow of events while displaying results

caBench-To-Bedside Design Document

 Page 67

14 Data List

14.1 Overview
The user’s selected data is represented by the data list. After adding data into the data list, user
can save it and create experiment out of it. It is more like a shopping cart where user adds the
data in which he / she is interested.

14.2 View Data list
Following diagram illustrate the classes involved in displaying the data list.

Figure 44 Classes involved in displaying data-list

• DataRow class represents a single object added into the data list. It gives the tree like
structure if the user’s data. The similar types of the objects are grouped by an IDataRow
and it is distinguished by setting its isData flag to false (It is referred as a title node).

• DataList represents current selected data. It contains a tree of IDataRow. The root of the
tree is represented by a single IDataRow.

• DataListPanel is the container panel for data list. It contains
DataListDetailedPanelContainer and TreePanel

• TreePanel contains the tree of the data list. On selecting a particular node its details are
displayed in the DataListDetailedPanelContainer.

caBench-To-Bedside Design Document

 Page 68

• DataListDetailedPanelInterface is implemented by a class that can be used to show the
details of objects in datalist. It getCSVData() method returns the comma separated
values of the object. This is used for exporting the details of the object.

• DataListDetailedPanelContainer displays the details of the selected IDataRow from
TreePanel. If it is title node, then objects under it are displayed in the form of the
spreadsheet using DefaultSpreadSheetViewPanel. If it is a single object the details are
displayed using DefaultDetailedPanel.

14.3 Data List Operations
Save and retrieve are the main operations related to data list.
A new model is created using the dynamic extensions (DE) API corresponding to each data list.
Since a data list is a set of trees, a dummy root entity is created which has these trees as
children. The dummy root entity is thus representative of the data list. Then the records are saved
as records of the respective entities of this model using DE. These steps are orchestrated by the
DataListOperationsController. It has two methods:

• DataListMetadata saveDataList(IDataRow rootRecordDataRow, DataListMetadata
dataListMetadata). It saves the data list into the database. In the process, appropriate
DataListSaver is invoked to obtain the DE specific representation of the records and the
new model to be created. See Data list transformers (Chapter CRecord Customization)

• List<IRecord> getEntityRecords(Long entityId). Return records of the given entity. It
delegates the operation to appropriate DataListRetriever. See Data list transformers
(Chapter CRecord Customization)

Following are the sequence diagrams illustrating the flow while retrieving and saving records of a
data list

sd datalist

DataListBean

DataListOperationsControllerClient DataListOperationsFactory

«interface»

DataListRetriev er<R
extends IRecord>

appropriate datalistRetriever is

obtained by referring to

ResultConfigurationParser.

getEnti tyRecord(entityId)

getEnti tyRecords(entityId)

createDataListRetriever(entity)

new

DataListRetriever:=

getEntityRecords()

List<IRecord>:=

List<IRecord>:=

List<IRecord>

Figure 45 Sequence diagram for retrieving records of a data list

caBench-To-Bedside Design Document

 Page 69

The factory DataListOperationsFactory provides the appropriate DataListRetriever or
DataListSaver by referring to ResultConfigurationParser..

sd datalistsav e

Client

DataListBean

DataListOperationsController DataListOperationsFactory

«interface»

DataListSav er<R
extends IRecord>

cal led for each enti ty in

the data list

cal led for each record of that entity.

resulting map is persisted using DE

locate

saveDataList(rootDataRow,datalistMetadata)

saveDataList(rootRecordDataRow,dataListMetadata)

createDataListSaver(enti ty)

new

DataListSaver:=

getNewEntity()

EntityInterface:=

getRecordAsMap(record)

Map<AbstractAttributeInterface, Object>:=

Figure 46 Sequence diagram for saving records of a data list

caBench-To-Bedside Design Document

 Page 70

15 Experiment

15.1 Overview
User can create the experiment out of saved data-list. After creating user can perform various
operations on it like visualizing data in the experiment using viewers, perform analysis or filtering
the data etc.

15.2 Experiment Data Model
Following figure show the experiment data model.

Figure 47 Experiment data model

• AbstractDomainObject is the base of all the domain objects in caB2B. It provides id and
activity status fields required for all the domain objects

• AdditionalMetadata provides the additional information for the experiment and related
objects. It includes name, description, created time and last updated time.

• Experiment contains the one or more DataListMetadata.

• ExperimentGroup is logical grouping of the experiments. It also has a parent group. This
gives the folder (tree like) structure for experiment and experiment group.

• DataListMetadata is the object that represents the actual data saved. It contains the one or
more entity ids that correspond to the DE entity ids created for the saved data.

15.3 Saving an Experiment

Following sequence diagram shows the flow of events while creating and saving a new
experiment:

caBench-To-Bedside Design Document

 Page 71

sd Experiment save

User

SearchNavigationPanel

NewExperimentDetailsPanel

Experiment

«interface»

ExperimentBusinessInterface

save data l ist

createNewExperiment

setName

setDescription

setProject

save

addDataListMetadata(dataListMetadata)

addExperiment(exp)

Figure 48 Flow of evens for saving experiment

15.4 Opening an Experiment
Following are the classes involved in displaying the experiment.

• ExperimentPanel is used to display details of all experiments. It is invoked when Experiment
tab on GlobalNavigation panel is clicked. It contains ExperimentHierarchyPanel on left hand
side and ExperimentDetailsPanel on right hand side.

• ExperimentHierarchyPanel is a panel to display experiments folder structure in the form of
project and sub projects. On click of link in the tree details of the selected experiment or
group are shown in ExperimentDetails panel.

• ExperimentDetailsPanel displays the information of the selected experiment group or
experiment in a spreadsheet format. On the click of experiment name, ExperimentOpenPanel
gets invoked.

• ExperimentOpenPanel is the main panel used to display the actual data in the selected
experiment. It has ExperimentStackBox embedded in left hand side and
ExperimentDataCategoryGridPanel embedded in right hand side.

• ExperimentStackBox is used to display data and the other tools that user can invoke on the
data of the experiment. It contains panels to show the categories in the experiment. It also
contains Filter panel, Visualization Panel and analytical services panel. On click of link in the

caBench-To-Bedside Design Document

 Page 72

data category tree, the details of selected data category are shown in
ExperimentDataCategoryGridPanel.

• ExperimentDataCategoryGridPanel is the base panel to display actual data in the
experiment in the form of spreadsheet. It also acts as container for the dynamic tabs that gets
added as user performs visualization and analytical tasks.

Figure 49 Experiment UI model

Following sequence diagram illustrates the flow of events while opening an experiment.

caBench-To-Bedside Design Document

 Page 73

Figure 50 Flow of event for Open Experiment

15.5 Custom Data category
User can filter the data present in the experiment and save that sub set of the data as a custom
data category. When user creates custom category, the current data present in the
ExperimentDataCategoryGridPanel is taken and a new data list is created. This is distinguished
with the other data list by setting its isCustomDataCategory flag to true. This data list is added is
then saved along with its metadata and actual data. After this it is added into the current
experiment and then UI is updated to reflect the change.

Following sequence diagram illustrates the flow of events while saving the custom data category.

caBench-To-Bedside Design Document

 Page 74

Figure 51 flow for saving the custom data category

caBench-To-Bedside Design Document

 Page 75

16 Charting

16.1 Overview
The experiment data saved by the user after searching and saving the data list, can be scrutinize
either by Analytical services or Visualization tools. Cab2b chart is one of the visualization options.
It allows the user to see the various numerical data graphically by generating various charts out of
it.

16.2 Classes Involved
cd charts

AbstractChart

+ AbstractChart(Cab2bChartRawData)

+ createChartPanel() : JPanel

createDataset() : Dataset

createChart(Dataset) : JFreeChart

BarChart

StandardCategoryItemLabelGenerator

«static»

BarChart::LabelGenerator

~ LabelGenerator()

+ generateLabel(CategoryDataset, int, int) : String

Cab2bPanel

Cab2bChartPanel

+ Cab2bChartPanel(Cab2bTable)

+ setChartType(ChartType, String) : void

+ setChartType(ChartType) : void

ActionListener

Cab2bChartPanel::

RadioButtonListener

+ RadioButtonListener()

+ actionPerformed(ActionEvent) : void

Cab2bChartRawData

+ Cab2bChartRawData(Cab2bTable, ChartOrientation)

+ getCab2bTable() : Cab2bTable

+ getSelectedColumnsIndices() : int[]

+ getSelectedRowIndices() : int[]

+ getChartOrientation() : ChartOrientation

+ setChartOrientation(ChartOrientation) : void

«enumeration»

ChartType

~ ChartType(String)

+ getType() : String

+ getChartType(String) : ChartType

LineChart

ScatterPlot

-chartType

-chartRawData

#chartRawData

Figure 52 Classes Involved in Charting

Cab2bChartRawData stores the reference to the data table, the indices of the rows and columns
selected in the data table, and the series of the chart (i.e. row wise or column wise) to be
displayed.

ChartType is a wrapper around any of the following three types of charts that Cab2bChartPanel
uses to decide which chart is to be rendered.

• BAR_CHART

• LINE_CHART

• SCATTER_PLOT

Cab2bChartPanel displays the requested chart. It also has the options to change the series of
the chart. Cab2bChartPanel:RadioButtonListener acts on the selected option to change the
series of the chart.

caBench-To-Bedside Design Document

 Page 76

AbstractChart is the base class of all the chart classes. It holds the data to be rendered and
provides a functionality that creates the chart panel.
BarChart is the chart class that renders the data to generate the bar chart.
BarChart:LabelGenerator is used by BarChart to generate the labels required in the chart.
LineChart is the chart class that renders the data to generate the line chart.
ScatterPlot is the chart class that renders the data to generate the scatter plot.

16.3 Sequence diagram

sd Sequence Diagram

Cab2bChartPanel

ExperimentStackBox

Client

BarChart

Cab2bPanel JTabbedPane

actionPerformed(ActionEvent)

[currentChartPanel == nul l]:

setChartType(ChartType) new

createChartPanel

add(JPanel)

add(Cab2bChartPanel)

add(Cab2bPanel)

CloseButton:performedAction(ActionEvent)

remove(Cab2bPanel)

Figure 53 Flow of events happening during chart generation

Future functionalities
- Display large chart with scroll bars.
- To limit the legends of the chart to be displayed.

caBench-To-Bedside Design Document

 Page 77

17 Filters

17.1 Overview
This component provides functionality to apply different types of filters on the table. JXTable
provides basic functionality of filtering based on a pattern. It is extended to add few more types of
filters. Based on the datatype of the specified column, following filters are supported

- Pattern filter
- Range Filter
- Enumerated Filter
- Boolean filter

Out of the above mentioned Pattern, Enumerated and Boolean filter are kind of pattern filer. Only
Range filter is implemented in altogether different manner. Multiple filters can be applied on
JXTable using FilterPipeline using method setFilters(new FilterPipeline(filters)); Here filters is an
array of filters where each element in this array is a filter with one condition on any column.

Filter component comprises of two basic components:

3. Popup to take the inputs
4. Actual filter to provide filtering action to the table.

17.2 Classes Involved

cd filter

Filter

CaB2BFilter

«interface»

CaB2BFilterInterface

Cab2bPanel

Cab2bFilterPopup

PatternFilter

CaB2BPatternFilter

JPanel

MouseListener

MouseMotionListener

DataFilterUI

EnumeratedFilterPopUp

MouseListener

ActionListener

FocusListener

KeyListener

FilterComponent

Icon

ForwardArrowIcon

PatternPopup

RangeFilter

Icon

Rev erseArrowIcon

Cab2bPanel

ApplyFilterPanel

ItemListener

ApplyFilterPanel::

ComboItemListener

-applyFilterpanel
-dataFilter

-oldfi l ter

~m_parentFilter

Figure 54 Classes Involved in Filtering data

caBench-To-Bedside Design Document

 Page 78

ApplyFilterPanel creates a combo-box of all the headers of the columns in the present table and
on click of its elements, calls an inner class ComboItemListener. This class also maintains a map
filterMap of all the filters that are presently applied on the table.

ComboItemListener handles mouse click events. Method itemStateChanged() first finds the
attribute datatype of the header clicked and accordingly instantiates subclass of
Cab2bFilterPopup.

Cab2bFilterPopup is an abstract base class for all types of filter pop-ups. Its abstract method
okActionPerformed() is called on the “OK” button click of filter pop-up. It returns
CaB2BFilterInterface.

PatternPopup extends Cab2bFilterPopup. This class creates a pop-up asking user to enter
desired search pattern. okActionPerformed() returns Cab2bPatternFilter.

FilterComponent class is a pop-up of range type. This class along with DataFilterUI,
ForwardArrowIcon, ReverseArrowIcon forms user interface for range type filter pop-up.
okActionPerformed() returns RangeFilter. This class primarily handles all the getters of min and
max values for which the range is to be set.

DataFilterUI is responsible for actual UI implementation of the slider functionality.
ForwardArrowIcon and ReverseArrowIcon generate icons which slide over the slider.

EnumeratedFilterPopUp is used for columns whose values can take limited/enumerated values.
Its okActionPerformed() returns CaB2BPatternFilter. As enumerated filter is nothing but pattern
filter with multiple patterns, this class, while performing OK button action, connects all the
selected patterns to create one single pattern. This pattern then is used to create and return an
instance of CaB2BPatternFilter.

CaB2BFilterInterface is common interface for all the custom filters. Its copy() method creates
copy of CaB2BFilterInterface and returns. This method is responsible for creating a copy of a
filter. It is called while applying filters over the table. Values in filterMap from ApplyFilterPanel are
never used directly to create an array of filters to be applied on the table. A copy of each filter
from filterMap is created and that copy is added to current array of filters. This is done because
when a filter is edited, we need to first check prior values of the same. Thus reference copy is
necessary.

CaB2BPatternFilter extends java class PatternFilter. It has additional toString() method to create
a text of currently applied filter. It is used to display currently applied filters to user.
RangeFilter is a modified a PatternFilter accommodating range inputs and filtering.

caBench-To-Bedside Design Document

 Page 79

17.3 Sequence diagram

sd seq

Client

ApplyFilterPanel

CaB2BFilterPopUp

CaB2BFilterInterface

i temStateChanged(ItemEvent)

new

okActionPerformed(ActionEvent)

new

CaB2BFilterInterface

addFilter()

copy()

CaB2BFilterInterface

Figure 55 Flow of events happening when user applies a filter

caBench-To-Bedside Design Document

 Page 80

18 Analytical Services Invoker

18.1 Overview
Analytical services are the services which transforms data from one form to another by applying
some algorithm on it. When user is viewing records of a particular entity, analytical services
applicable for that entity are shown in left-hand-side stack box.

18.2 Entity to Analytical Service Mapping XML
Finding analytical services for an entity is a metadata driven process. A file
EntityToAnalyticalServiceMapping.xml is used to find that. Figure below shows a sample of that
configuration file.

Figure 56 Sample EntityToAnalyticalServiceMapping.xml

• <entity>: This file has <entity> tag which specifies which gives mapping between entity
and its one applicable service. There can be multiple services applicable for an entity. For
this there will be those many <entity> tags with different service names.

• <service>: This file has one <service> tag for one service. It has a unique name of the
service which is shown to the user and the URL pointing to the running instance of that
service.

• <method> tag in the service states which method of that service is to be invoked.
Attribute serviceDetailsClass gives the class which holds details of the service. The
class mentioned here must implement ServiceDetailsInterface. There is a method on
this interface getRequiredEntities () which returns list of entities. One of them will be the
one for which user is currently viewing the data. For other entities a dynamic UI is
generated to specify values for its attributes. Attribute serviceInvokerClass specifies
which class to be used to invoke the service. The class mentioned here must implement
ServiceInvokerInterface.

caBench-To-Bedside Design Document

 Page 81

18.3 Classes involved
Diagram below shows the classes involved at the backend. It also shows implementation done for
comparative marker selection analytical service.

Figure 57 Classes involved in getting and invoking analytical services

• ServiceDetailsInterface: It defines the methods needed to describe any analytical
service like its name, required entities, URL pointing to service instance. All the classes
mentioned as value of attribute serviceDetailsClass in above XML file must implement
this interface

• ServiceInvokerInterface: It defines the method to invoke an analytical service. All the
classes mentioned as value of attribute serviceInvokerClass in above XML file must
implement this interface

• EntityToAnalyticalServiceMapper: This is a singleton class which parses the
EntityToAnalyticalServiceMapping.xml file and stores the mapping information into an
internal map. This class provides the methods to get the service interface and the service
invoker interface.

• AnalyticalServiceOperations: This class has a method to get applicable analytical
services which returns list of ServiceDetailsInterface for a given entity. It also has
method invoke () to call the service with passed data.

• CMSServiceDetails and CMSServiceInvoker are the real extensions implemented to
invoke comparative marker selection analytical service.

caBench-To-Bedside Design Document

 Page 82

19 Appendix

19.1 Dynamic Extension and MDR

19.1.1 Overview
One of the most important components of the DE project is its metadata repository. MDR
can contain metadata about dynamic extensions or static UML models. Each DE is also a
UML model. The MDR is very important component not just for DE, but also for applications
like caB2B and caTissue Suite. The basic backbone of MDR is as shown in Figure 1
Metadata Repository backbone.

Figure 58 Metadata Repository backbone

MDR contains the following metadata for a domain model:
- Classes
- Attributes
- Data type
- Concept codes
- Description
- Permissible values

In case the domain model is created using the dynamic extensions user interface, the MDR
will contain the UI display properties and the database mapping information for each attribute.
The metadata for the user interface contains:

- Type of UI Control
- Properties like height, width, password like string and so forth
- Mandatory or optional attribute
Table to which the entity maps and column to which the attribute maps

19.1.2 UML Metadata
This contains all the information present in the UML model like class, attributes, and
associations including the permissible values. Following diagram shows the classes involved
in entity creation along with the relationships involved in these classes.

caBench-To-Bedside Design Document

 Page 83

Figure 59 Dynamic extension basic metadata

AbstractMetadata: This is an abstract base class from which the backbone metadata objects
are derived. This class contains generic attributes which are part of all objects (like create
date, last updated and so forth).
EntityGroup: An entity group is a logical collection of entities. For example, all classes of an
application are loaded under one entity group. It contains multiple entities.
Entity: This class represents an UML class. An entity is associated to itself to specify its
parent entity. An entity can have zero or one parent entity. An entity can also have zero or
more children entities.

AbstractAttribute: An entity can either have zero or more primitive attributes, or have zero
or more associated classes. This is represented by the AbstractAttribute class. It is the base
class for Association and Attribute classes.
Attribute: The class represents a primitive attribute. For example, name is an attribute of the
user entity. Attribute can be of following types:

o String attribute
o Double attribute
o Short attribute
o Long attribute
o Boolean Attribute
o Date attribute
o ByteArray (for BLOB/CLOB)

Following diagram shows how attribute type is defined or changed in attribute.

caBench-To-Bedside Design Document

 Page 84

Figure 60 Attribute Type Metadata

Attribute class is associated with the class “AttributeTypeInformation” that specifies the type
of the attribute.
AttributeTypeInformation: This class represents the type of the attribute. Attribute type can
be any of the above mentioned types. This class is an abstract class which is extended by all
the specific primitive attribute types like DoubleAttributeTypeInformation or
StringAttributeTypeInformation.

Role: This class describes an association’s cardinality and the association type. The class
has the following attributes
associationType: This could be two types of association: containment or linking.
Containment association type is one of Person and Address where the Person entity will
contain Address entity within it. The Address object does not exist on its own. Linking
association type is one of User and Study. Here, both the objects can be created
independently. The user can be part of multiple studies and a study can contain multiple
users.
maxCardinality: Maximum cardinality of association (for example, 1 or many)
minCardinality: Maximum cardinality of association (for example, 0, 1 or many)
name: The role name of the association.

Association: This class represents the associations that an entity can have with other
entities. E.g. a User entity is associated with Institute entity.
sourceRole: This represents the role of the association from the source context.
targetRole: This represents the role of the association from the target context.

19.1.3 Inheritance Metadata support
One of the main aspects of any application is the inheritance between its entities. So when
any object model is loaded into DE database, this hierarchy of objects should be preserved.

caBench-To-Bedside Design Document

 Page 85

This section explains how inheritance is preserved in DE using the required metadata objects
of DE. Following diagram explains the required objects and relationships for inheritance.

Figure 61 Inheritance Metadata

Entity: Entity object represents the java class in any object model. So to maintain the
hierarchy of classes, following attributes and associations are maintained.

isAbstract: This flag maintains whether the entity is abstract or not.
inheritStrategy: This attribute stores the Hibernate’s strategy to store the actual data in the
actual database. Allowed values for this attribute are:

1. Joined subclass
2. Subclass
3. Table per concrete class.

19.1.4 Attribute data elements and default values
An attribute can have values that are derived from some fixed source or some user defined
set of allowable values. For example, gender attribute can have only fixed values like male
and female. Additionally, the attribute can have one of them as a default value. This
information is saved in following way. The diagram shows the way in which the allowable and
default values are stored in DE

caBench-To-Bedside Design Document

 Page 86

Figure 62 Attribute Data Elements

caDSRDE holds all the common information for all the types of data elements. Some of the
associations of this class are:
o AttributeTypeInformation: Source of the allowable values is specific to the attribute type.

So to represent this information correctly, AttributeTypeInformation class is associated
with the DataElement so that it represents the type of source for the attribute.

o AbstractValue: This class represents a value, an attribute can have. This value can be
used as a default value or as one of the allowable values. The class acts as a base class
for the entire attribute type specific value

